RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2015, Volume 54, Number 5, Pages 589–598 (Mi al714)  

Representation of free $m$-products of $m$-groups by automorphisms of linearly ordered sets

S. V. Varaksin

Altai State University, pr. Lenina 61, Barnaul, 656049, Russia

Abstract: A representation of a free $m$-product in the class of all of $m$-groups is constructed as a factor of a free $m$-group over a free product in the class of partially ordered groups with reversional automorphisms.

Keywords: $m$-group, free $m$-group, partially ordered group with a reversional automorphism.

DOI: https://doi.org/10.17377/alglog.2015.54.503

Full text: PDF file (134 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2015, 54:5, 380–386

Bibliographic databases:

UDC: 512.545
Received: 11.11.2014

Citation: S. V. Varaksin, “Representation of free $m$-products of $m$-groups by automorphisms of linearly ordered sets”, Algebra Logika, 54:5 (2015), 589–598; Algebra and Logic, 54:5 (2015), 380–386

Citation in format AMSBIB
\Bibitem{Var15}
\by S.~V.~Varaksin
\paper Representation of free $m$-products of $m$-groups by automorphisms of linearly ordered sets
\jour Algebra Logika
\yr 2015
\vol 54
\issue 5
\pages 589--598
\mathnet{http://mi.mathnet.ru/al714}
\crossref{https://doi.org/10.17377/alglog.2015.54.503}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468419}
\transl
\jour Algebra and Logic
\yr 2015
\vol 54
\issue 5
\pages 380--386
\crossref{https://doi.org/10.1007/s10469-015-9359-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366155000003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958039527}


Linking options:
  • http://mi.mathnet.ru/eng/al714
  • http://mi.mathnet.ru/eng/al/v54/i5/p589

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:58
    Full text:6
    References:12
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020