RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2015, Volume 54, Number 6, Pages 733–747 (Mi al722)  

Algebraic sets in a finitely generated rigid $2$-step solvable pro-$p$-group

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: A $2$-step solvable pro-$p$-group $G$ is said to be rigid if it contains a normal series of the form
$$ G=G_1>G_2>G_3=1 $$
such that the factor group $A=G/G_2$ is torsion-free Abelian, and the subgroup $G_2$ is also Abelian and is torsion-free as a $\mathbb Z_pA$-module, where $\mathbb Z_pA$ is the group algebra of the group $A$ over the ring of $p$-adic integers. For instance, free metabelian pro-$p$-groups of rank $\ge2$ are rigid. We give a description of algebraic sets in an arbitrary finitely generated $2$-step solvable rigid pro-$p$-group $G$, i.e., sets defined by systems of equations in one variable with coefficients in $G$.

Keywords: finitely generated $2$-step solvable rigid pro-$p$-group, algebraic set.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-01485
Supported by RFBR, project No. 15-01-01485.


DOI: https://doi.org/10.17377/alglog.2015.54.604

Full text: PDF file (168 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2016, 54:6, 478–488

Bibliographic databases:

UDC: 512.5
Received: 02.07.2015

Citation: N. S. Romanovskii, “Algebraic sets in a finitely generated rigid $2$-step solvable pro-$p$-group”, Algebra Logika, 54:6 (2015), 733–747; Algebra and Logic, 54:6 (2016), 478–488

Citation in format AMSBIB
\Bibitem{Rom15}
\by N.~S.~Romanovskii
\paper Algebraic sets in a~finitely generated rigid $2$-step solvable pro-$p$-group
\jour Algebra Logika
\yr 2015
\vol 54
\issue 6
\pages 733--747
\mathnet{http://mi.mathnet.ru/al722}
\crossref{https://doi.org/10.17377/alglog.2015.54.604}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3497817}
\transl
\jour Algebra and Logic
\yr 2016
\vol 54
\issue 6
\pages 478--488
\crossref{https://doi.org/10.1007/s10469-016-9367-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000377184900004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960376792}


Linking options:
  • http://mi.mathnet.ru/eng/al722
  • http://mi.mathnet.ru/eng/al/v54/i6/p733

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:130
    Full text:15
    References:45
    First page:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019