RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2015, Volume 54, Number 6, Pages 748–768 (Mi al723)  

This article is cited in 1 scientific paper (total in 1 paper)

Comparing classes of finite sums

U. Andrewsa, D. I. Dusheninb, C. Hillc, J. F. Knightd, A. G. Melnikove

a Department of Mathematics, University of Wisconsin, Madison, WI, 53706-1388, USA
b SNIIGGiMS, Krasnyi pr. 67, Novosibirsk, Russia
c Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT, 06459, USA
d Department of Mathematics, Univ. Notre Dame, 255 Hurley, Notre Dame, IN, 46556, USA
e Institute of Natural and Mathematical Sciences, Massey University, Palmerston North, 4442, New Zealand

Abstract: The notion of Turing computable embedding is a computable analog of Borel embedding. It provides a way to compare classes of countable structures, effectively reducing the classification problem for one class to that for the other. Most of the known results on nonexistence of Turing computable embeddings reflect differences in the complexity of the sentences needed to distinguish among nonisomorphic members of the two classes. Here we consider structures obtained as sums. It is shown that the $n$-fold sums of members of certain classes lie strictly below the $(n+1)$-fold sums. The differences reflect model-theoretic considerations related to Morley degree, not differences in the complexity of the sentences that describe the structures. We consider three different kinds of sum structures: cardinal sums, in which the components are named by predicates; equivalence sums, in which the components are equivalence classes under an equivalence relation; and direct sums of certain groups.

Keywords: Turing computable embedding, classes of finite sums, Morley degree, complexity of sentences.

Funding Agency Grant Number
National Science Foundation DMS 1101123
DMS 1201338
Supported by NSF, grant DMS-1101123.
Supported by NSF, grant DMS-1201338.


DOI: https://doi.org/10.17377/alglog.2015.54.605

Full text: PDF file (226 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2016, 54:6, 489–501

Bibliographic databases:

UDC: 510.5
Received: 08.07.2013
Revised: 18.02.2015

Citation: U. Andrews, D. I. Dushenin, C. Hill, J. F. Knight, A. G. Melnikov, “Comparing classes of finite sums”, Algebra Logika, 54:6 (2015), 748–768; Algebra and Logic, 54:6 (2016), 489–501

Citation in format AMSBIB
\Bibitem{AndDusHil15}
\by U.~Andrews, D.~I.~Dushenin, C.~Hill, J.~F.~Knight, A.~G.~Melnikov
\paper Comparing classes of finite sums
\jour Algebra Logika
\yr 2015
\vol 54
\issue 6
\pages 748--768
\mathnet{http://mi.mathnet.ru/al723}
\crossref{https://doi.org/10.17377/alglog.2015.54.605}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3497818}
\transl
\jour Algebra and Logic
\yr 2016
\vol 54
\issue 6
\pages 489--501
\crossref{https://doi.org/10.1007/s10469-016-9368-7}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000377184900005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960415514}


Linking options:
  • http://mi.mathnet.ru/eng/al723
  • http://mi.mathnet.ru/eng/al/v54/i6/p748

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. G. Melnikov, K. M. Ng, “Computable torsion abelian groups”, Adv. Math., 325 (2018), 864–907  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:110
    Full text:11
    References:41
    First page:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020