Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2016, Volume 55, Number 2, Pages 192–218 (Mi al737)  

This article is cited in 4 scientific papers (total in 4 papers)

Projections of finite one-generated rings with identity

S. S. Korobkov

Urals State Pedagogical University, ul. K. Libknekhta 9, Yekaterinburg, 620065 Russia

Abstract: Associative rings $R$ and $R'$ are said to be lattice-isomorphic if their subring lattices $L(R)$ and $L(R')$ are isomorphic. An isomorphism of the lattice $L(R)$ onto the lattice $L(R')$ is called a projection (or else a lattice isomorphism) of the ring $R$ onto the ring $R'$. A ring $R'$ is called the projective image of a ring $R$. Lattice isomorphisms of finite one-generated rings with identity are studied. We elucidate the general structure of finite one-generated rings with identity and also give necessary and sufficient conditions for a finite ring decomposable into a direct sum of Galois rings to be generated by one element. Conditions are found under which the projective image of a ring decomposable into a direct sum of finite fields is a one-generated ring. We look at lattice isomorphisms of one-generated rings decomposable into direct sums of Galois rings of different types. Three main types of Galois rings are distinguished: finite fields, rings generated by idempotents, and rings of the form $GR(p^n,m)$, where $m>1$ and $n>1$. We specify sufficient conditions for the projective image of a onegenerated ring decomposable into a sum of Galois rings and a nil ideal to be generated by one element.

Keywords: finite rings, one-generated rings, lattice isomorphisms of associative rings.

DOI: https://doi.org/10.17377/alglog.2016.55.203

Full text: PDF file (250 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2016, 55:2, 128–145

Bibliographic databases:

UDC: 512.552
Received: 11.06.2015

Citation: S. S. Korobkov, “Projections of finite one-generated rings with identity”, Algebra Logika, 55:2 (2016), 192–218; Algebra and Logic, 55:2 (2016), 128–145

Citation in format AMSBIB
\Bibitem{Kor16}
\by S.~S.~Korobkov
\paper Projections of finite one-generated rings with identity
\jour Algebra Logika
\yr 2016
\vol 55
\issue 2
\pages 192--218
\mathnet{http://mi.mathnet.ru/al737}
\crossref{https://doi.org/10.17377/alglog.2016.55.203}
\transl
\jour Algebra and Logic
\yr 2016
\vol 55
\issue 2
\pages 128--145
\crossref{https://doi.org/10.1007/s10469-016-9383-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000382002800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84981275755}


Linking options:
  • http://mi.mathnet.ru/eng/al737
  • http://mi.mathnet.ru/eng/al/v55/i2/p192

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. S. Korobkov, “Projections of finite commutative rings with identity”, Algebra and Logic, 57:3 (2018), 186–200  mathnet  crossref  crossref  isi
    2. S. S. Korobkov, “Projections of finite nonnilpotent rings”, Algebra and Logic, 58:1 (2019), 48–58  mathnet  crossref  crossref  isi
    3. S. S. Korobkov, “Lattice isomorphisms of finite local rings”, Algebra and Logic, 59:1 (2020), 59–70  mathnet  crossref  crossref  isi
    4. Kaarli K., Waldhauser T., “on Categorical Equivalence of Finite P-Rings”, Commun. Algebr., 49:4 (2021), 1437–1450  crossref  mathscinet  zmath  isi  scopus
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:128
    Full text:23
    References:22
    First page:7

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021