  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Impact factor Subscription Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Algebra Logika: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Algebra Logika, 2016, Volume 55, Number 4, Pages 478–492 (Mi al754)  Decomposition of a group over an Abelian normal subgroup

N. S. Romanovskiiab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia

Abstract: Let a group $G$ have an Abelian normal subgroup $A$; put $\overline G=G/A$ and $\overline g=gA$ for $g\in G$. We can think of $A$ as a right $\mathbb Z\overline G$-module and define the action of an element $u=\alpha_1\overline g_1+…+\alpha_n\overline g_n\in\mathbb Z\overline G$ on $a\in A$ by a formula $a^u=(a^{g_1})^{\alpha_1}\cdot\ldots\cdot(a^{g_n})^{\alpha_n}$; here $a^{g_i}=g^{-1}_iag_i$. Denote by $\Theta_{\mathbb Z\overline G}(A)$ the annihilator of $A$ in the ring $\mathbb Z\overline G$, which is a two-sided ideal. Let $R=\mathbb Z\overline G/\Theta_{\mathbb Z\overline G}(A)$. A subgroup $A$ can also be treated as an $R$-module. We give a criterion for the existence of an $R$-decomposition of $G$ over $A$, i.e., the possibility of embedding $G$ in a semidirect product $\overline G\cdot D$, where $D$ is an $R$-module. It is also proved that an $R$-decomposition always exists in one important case.

Keywords: Abelian normal subgroup, $R$-decomposition.

 Funding Agency Grant Number Russian Science Foundation 14-21-00065 Supported by Russian Science Foundation, project No. 14-21-00065.

DOI: https://doi.org/10.17377/alglog.2016.55.407  Full text: PDF file (175 kB) References: PDF file   HTML file

English version:
Algebra and Logic, 2016, 55:4, 315–326 Bibliographic databases:  UDC: 512.5

Citation: N. S. Romanovskii, “Decomposition of a group over an Abelian normal subgroup”, Algebra Logika, 55:4 (2016), 478–492; Algebra and Logic, 55:4 (2016), 315–326 Citation in format AMSBIB
\Bibitem{Rom16} \by N.~S.~Romanovskii \paper Decomposition of a~group over an Abelian normal subgroup \jour Algebra Logika \yr 2016 \vol 55 \issue 4 \pages 478--492 \mathnet{http://mi.mathnet.ru/al754} \crossref{https://doi.org/10.17377/alglog.2016.55.407} \transl \jour Algebra and Logic \yr 2016 \vol 55 \issue 4 \pages 315--326 \crossref{https://doi.org/10.1007/s10469-016-9401-x} \isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000388103400007} \scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994758731} 

• http://mi.mathnet.ru/eng/al754
• http://mi.mathnet.ru/eng/al/v55/i4/p478

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. N. S. Romanovskii, “Divisible rigid groups. Algebraic closedness and elementary theory”, Algebra and Logic, 56:5 (2017), 395–408    2. E. I. Timoshenko, “On splittings, subgroups, and theories of partially commutative metabelian groups”, Siberian Math. J., 59:3 (2018), 536–541     3. N. S. Romanovskii, “Generalized rigid metabelian groups”, Siberian Math. J., 60:1 (2019), 148–152    •  Number of views: This page: 109 Full text: 3 References: 24 First page: 7 Contact us: math-net2020_01 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020