RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2017, Volume 56, Number 2, Pages 176–201 (Mi al787)  

This article is cited in 1 scientific paper (total in 1 paper)

Universal invariants for classes of Abelian groups

A. A. Mishchenkoab, V. N. Remeslennikova, A. V. Treierab

a Omsk Branch of Sobolev Institute of Mathematics, ul. Pevtsova 13, Omsk, 644099 Russia
b Omsk State Technical University, pr. Mira 11, Omsk, 644050 Russia

Abstract: We prove an analog of Szmielew’s theorem for universal equivalence of Abelian groups.

Keywords: Abelian group, invariant, universal equivalence.

Funding Agency Grant Number
Russian Science Foundation 14-11-00085
The work is supported by Russian Science Foundation (project No. 14-11-00085).


DOI: https://doi.org/10.17377/alglog.2017.56.204

Full text: PDF file (231 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2017, 56:2, 116–132

Bibliographic databases:

UDC: 512.54.01
Received: 24.06.2015
Revised: 04.03.2016

Citation: A. A. Mishchenko, V. N. Remeslennikov, A. V. Treier, “Universal invariants for classes of Abelian groups”, Algebra Logika, 56:2 (2017), 176–201; Algebra and Logic, 56:2 (2017), 116–132

Citation in format AMSBIB
\Bibitem{MisRemTre17}
\by A.~A.~Mishchenko, V.~N.~Remeslennikov, A.~V.~Treier
\paper Universal invariants for classes of Abelian groups
\jour Algebra Logika
\yr 2017
\vol 56
\issue 2
\pages 176--201
\mathnet{http://mi.mathnet.ru/al787}
\crossref{https://doi.org/10.17377/alglog.2017.56.204}
\transl
\jour Algebra and Logic
\yr 2017
\vol 56
\issue 2
\pages 116--132
\crossref{https://doi.org/10.1007/s10469-017-9434-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000405590600004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021912693}


Linking options:
  • http://mi.mathnet.ru/eng/al787
  • http://mi.mathnet.ru/eng/al/v56/i2/p176

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits”, Algebra and Logic, 57:6 (2019), 414–428  mathnet  crossref  crossref  isi
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:106
    References:24
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019