Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2017, Volume 56, Number 4, Pages 443–452 (Mi al807)  

This article is cited in 2 scientific papers (total in 2 papers)

Solimit points and $u$-extensions

Yu. L. Ershovab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia

Abstract: We give a characterization of $u$-extensions of topological $T_0$-spaces and also of sober spaces using a new concept of a solimit point. It is shown that the sobrification of an arbitrary $T_0$-space coincides with its greatest $u$-extension.

Keywords: solimit point, topological $T_0$-space, sober space, sobrification.

Funding Agency Grant Number
Russian Foundation for Basic Research 15-01-05114-а
Supported by RFBR, project No. 15-01-05114-a.


DOI: https://doi.org/10.17377/alglog.2017.56.404

Full text: PDF file (148 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2017, 56:4, 295–301

Bibliographic databases:

UDC: 515.125
Received: 14.03.2017

Citation: Yu. L. Ershov, “Solimit points and $u$-extensions”, Algebra Logika, 56:4 (2017), 443–452; Algebra and Logic, 56:4 (2017), 295–301

Citation in format AMSBIB
\Bibitem{Ers17}
\by Yu.~L.~Ershov
\paper Solimit points and $u$-extensions
\jour Algebra Logika
\yr 2017
\vol 56
\issue 4
\pages 443--452
\mathnet{http://mi.mathnet.ru/al807}
\crossref{https://doi.org/10.17377/alglog.2017.56.404}
\transl
\jour Algebra and Logic
\yr 2017
\vol 56
\issue 4
\pages 295--301
\crossref{https://doi.org/10.1007/s10469-017-9450-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000415280700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85033360422}


Linking options:
  • http://mi.mathnet.ru/eng/al807
  • http://mi.mathnet.ru/eng/al/v56/i4/p443

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. L. Ershov, M. V. Schwidefsky, “To the spectral theory of partially ordered sets”, Siberian Math. J., 60:3 (2019), 450–463  mathnet  crossref  crossref  isi  elib
    2. Yu. L. Ershov, M. V. Schwidefsky, “On function spaces”, Sib. elektron. matem. izv., 17 (2020), 999–1008  mathnet  crossref
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:168
    Full text:16
    References:24
    First page:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021