Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2004, Volume 43, Number 4, Pages 459–481 (Mi al83)  

This article is cited in 5 scientific papers (total in 5 papers)

$\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models

A. I. Stukachev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We consider the problem of being $\Sigma$-definable for an uncountable model of a $c$-simple theory in hereditarily finite superstructures over models of another $c$-simple theory. A necessary condition is specified in terms of decidable models and the concept of relative indiscernibility introduced in the paper. A criterion is stated for the uncountable model of a $c$-simple theory to be $\Sigma$-definable in superstructures over dense linear orders, and over infinite models of the empty signature. We prove the existence of a $c$-simple theory (of an infinite signature) every uncountable model of which is not $\Sigma$-definable in superstructures over dense linear orders. Also, a criterion is given for a pair of models to be recursively saturated.

Keywords: $\Sigma$-definability, $c$-simple theory, model, hereditarily finite superstructure, linear order

Full text: PDF file (265 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2004, 43:4, 258–270

Bibliographic databases:

UDC: 510.5
Received: 27.01.2003

Citation: A. I. Stukachev, “$\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models”, Algebra Logika, 43:4 (2004), 459–481; Algebra and Logic, 43:4 (2004), 258–270

Citation in format AMSBIB
\Bibitem{Stu04}
\by A.~I.~Stukachev
\paper $\Sigma$-Definability in Hereditarily Finite Superstructures and Pairs of Models
\jour Algebra Logika
\yr 2004
\vol 43
\issue 4
\pages 459--481
\mathnet{http://mi.mathnet.ru/al83}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2105849}
\zmath{https://zbmath.org/?q=an:1063.03020}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 4
\pages 258--270
\crossref{https://doi.org/10.1023/B:ALLO.0000035117.75573.2d}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-26444473522}


Linking options:
  • http://mi.mathnet.ru/eng/al83
  • http://mi.mathnet.ru/eng/al/v43/i4/p459

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Stukachev A., “Presentations of structures in admissible sets”, New Computational Paradigms, Lecture Notes in Computer Science, 3526, 2005, 470–478  crossref  zmath  isi
    2. A. I. Stukachev, “$\Sigma$-definability of uncountable models of $c$-simple theories”, Siberian Math. J., 51:3 (2010), 515–524  mathnet  crossref  mathscinet  zmath  isi
    3. V. G. Puzarenko, “Countably categorical theories”, Algebra and Logic, 51:3 (2012), 241–258  mathnet  crossref  mathscinet  zmath  isi
    4. A. S. Morozov, “$\Sigma$-preorderings in ${\mathbb{HF}(\mathbb{R})}$”, Algebra and Logic, 58:5 (2019), 405–416  mathnet  crossref  crossref  isi
    5. A. I. Stukachev, “Intervalnye rasshireniya poryadkov i temporalnye approksimatsionnye prostranstva”, Sib. matem. zhurn., 62:4 (2021), 894–910  mathnet  crossref
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:264
    Full text:79
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021