RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор
Подписка
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Алгебра и логика:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Алгебра и логика, 2018, том 57, номер 1, страницы 14–42 (Mi al833)  

О максимальных и субмаксимальных $\mathfrak X$-подгруппах

В. Гоa, Д. О. Ревинbca

a Dep. Math., Univ. Sci. Tech. China, Hefei 230026, P. R. China
b Ин-т матем. им. С. Л. Соболева СО РАН, пр. Ак. Коптюга, 4, г. Новосибирск, 630090, РОССИЯ
c Новосибирский гос. ун-т, ул. Пирогова, 1, г. Новосибирск, 630090, РОССИЯ

Аннотация: Пусть $\mathfrak X$ – класс конечных групп, замкнутый относительно взятия подгрупп, гомоморфных образов и расширений. Следуя Х. Виланду, подгруппу $H$ конечной группы $G$ называют субмаксимальной $\mathfrak X$-подгруппой, если существует изоморфное вложение $\phi\colon G\hookrightarrow G^*$ группы $G$ в некоторую конечную группу $G^*$, при котором $G^\phi$ субнормальна в $G^*$ и $H^\phi=K\cap G^\phi$ для некоторой максимальной $\mathfrak X$-подгруппы $K$ группы $G^*$. В случае, когда $\mathfrak X$ совпадает с классом всех $\pi$-групп для некоторого множества $\pi$ простых чисел, субмаксимальные $\mathfrak X$-подгруппы называют субмаксимальными $\pi$-подгруппами. В своём докладе на известной конференции по конечным группам в г. Санта-Круз в 1979 г. Х. Виланд подчеркнул важность изучения субмаксимальных $\pi$-подгрупп, привёл без доказательства некоторые их свойства и сформулировал ряд открытых вопросов, связанных с этими подгруппами. Здесь доказываются свойства максимальных и субмаксимальных $\mathfrak X$- и $\pi$-подгрупп и обсуждаются некоторые открытые вопросы, как сформулированные Виландом, так и новые. Один из таких вопросов, принадлежащих Виланду, состоит в следующем. Всегда ли все субмаксимальные $\mathfrak X$-подгруппы сопряжены в конечной группе $G$, в которой все максимальные $\mathfrak X$-подгруппы сопряжены?

Ключевые слова: конечная группа, максимальная $\mathfrak X$-подгруппа, субмаксимальная $\mathfrak X$-подгруппа, холлова $\pi$-подгруппа, свойство $\mathscr D_\pi$.

Финансовая поддержка Номер гранта
National Natural Science Foundation of China 11771409
Chinese Academy of Sciences President's International Fellowship Initiative 2016-VMA078
Российская академия наук - Федеральное агентство научных организаций I.1.1, проект 0314-2016-0001
Работа первого из авторов выполнена при финансовой поддержке Национального естественно-научного фонда Китая, грант No. 11771409, второго из авторов – при финансовой поддержке Президента Китайской академии наук, грант No. 2016VMA078, и программы I.1.1 фундаментальных исследований СО РАН, проект № 0314-2016-0001.


DOI: https://doi.org/10.17377/alglog.2018.57.102

Полный текст: PDF файл (285 kB)
Первая страница: PDF файл
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Algebra and Logic, 2018, 57:1, 9–28

Реферативные базы данных:

Тип публикации: Статья
УДК: 512.542.6
Поступило: 12.04.2017
Окончательный вариант: 06.12.2017

Образец цитирования: В. Го, Д. О. Ревин, “О максимальных и субмаксимальных $\mathfrak X$-подгруппах”, Алгебра и логика, 57:1 (2018), 14–42; Algebra and Logic, 57:1 (2018), 9–28

Цитирование в формате AMSBIB
\RBibitem{GuoRev18}
\by В.~Го, Д.~О.~Ревин
\paper О максимальных и субмаксимальных $\mathfrak X$-подгруппах
\jour Алгебра и логика
\yr 2018
\vol 57
\issue 1
\pages 14--42
\mathnet{http://mi.mathnet.ru/al833}
\crossref{https://doi.org/10.17377/alglog.2018.57.102}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 1
\pages 9--28
\crossref{https://doi.org/10.1007/s10469-018-9475-8}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000433237600002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047159923}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/al833
  • http://mi.mathnet.ru/rus/al/v57/i1/p14

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Просмотров:
    Эта страница:52
    Литература:4
    Первая стр.:1

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018