RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2018, Volume 57, Number 4, Pages 456–475 (Mi al859)  

Theories of relatively free solvable groups with extra predicate

E. I. Timoshenko

Novosibirsk State Technical University, pr. Marksa 20, Novosibirsk, 630092 Russia

Abstract: We study elementary and universal theories of relatively free solvable groups in a group signature expanded by one predicate distinguishing primitive or annihilating systems of elements.

Keywords: solvable group, nilpotent group, elementary theory, universal theory.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00100
Supported by RFBR, project No. 18-01-00100.


DOI: https://doi.org/10.17377/alglog.2018.57.404

Full text: PDF file (229 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2018, 57:4, 295–308

Bibliographic databases:

UDC: 512.5
Received: 27.03.2017
Revised: 16.08.2017

Citation: E. I. Timoshenko, “Theories of relatively free solvable groups with extra predicate”, Algebra Logika, 57:4 (2018), 456–475; Algebra and Logic, 57:4 (2018), 295–308

Citation in format AMSBIB
\Bibitem{Tim18}
\by E.~I.~Timoshenko
\paper Theories of relatively free solvable groups with extra predicate
\jour Algebra Logika
\yr 2018
\vol 57
\issue 4
\pages 456--475
\mathnet{http://mi.mathnet.ru/al859}
\crossref{https://doi.org/10.17377/alglog.2018.57.404}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 4
\pages 295--308
\crossref{https://doi.org/10.1007/s10469-018-9501-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452074900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056873482}


Linking options:
  • http://mi.mathnet.ru/eng/al859
  • http://mi.mathnet.ru/eng/al/v57/i4/p456

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:81
    References:14
    First page:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021