RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2018, Volume 57, Number 4, Pages 476–491 (Mi al860)  

Universal functions and unbounded branching trees

A. N. Khisamievab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia

Abstract: It is proved that a universal $\Sigma$-function exists in a hereditarily finite superstructure over an unbounded branching tree of finite height.

Keywords: hereditarily finite superstructure, unbounded branching tree of finite height, universal $\Sigma$-function.

DOI: https://doi.org/10.17377/alglog.2018.57.405

Full text: PDF file (182 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2018, 57:4, 309–319

Bibliographic databases:

UDC: 512.540+510.5
Received: 12.01.2017

Citation: A. N. Khisamiev, “Universal functions and unbounded branching trees”, Algebra Logika, 57:4 (2018), 476–491; Algebra and Logic, 57:4 (2018), 309–319

Citation in format AMSBIB
\Bibitem{Khi18}
\by A.~N.~Khisamiev
\paper Universal functions and unbounded branching trees
\jour Algebra Logika
\yr 2018
\vol 57
\issue 4
\pages 476--491
\mathnet{http://mi.mathnet.ru/al860}
\crossref{https://doi.org/10.17377/alglog.2018.57.405}
\transl
\jour Algebra and Logic
\yr 2018
\vol 57
\issue 4
\pages 309--319
\crossref{https://doi.org/10.1007/s10469-018-9502-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452074900005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85057068690}


Linking options:
  • http://mi.mathnet.ru/eng/al860
  • http://mi.mathnet.ru/eng/al/v57/i4/p476

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:53
    References:15
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020