Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2019, Volume 58, Number 3, Pages 320–333 (Mi al897)  

This article is cited in 2 scientific papers (total in 2 papers)

$\omega$-Independent bases for quasivarieites of torsion-free groups

A. I. Budkin

Altai State University, Barnaul

Abstract: It is proved that there exists a set $\mathcal{R}$ of quasivarieties of torsion-free groups which (a) have an $\omega$-independent basis of quasi-identities in the class $\mathcal{K}_{0}$ of torsion-free groups, (b) do not have an independent basis of quasi-identities in $\mathcal{K}_{0}$, and (c) the intersection of all quasivarieties in $\mathcal{R}$ has an independent quasi-identity basis in $\mathcal{K}_{0}$. The collection of such sets $\mathcal{R}$ has the cardinality of the continuum.

Keywords: quasivariety, quasi-identity, independent basis, $\omega$-independent basis, torsion-free group.

DOI: https://doi.org/10.33048/alglog.2019.58.302

Full text: PDF file (220 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2019, 58:3, 214–223

Bibliographic databases:

UDC: 512.57
Received: 19.04.2018
Revised: 24.09.2019

Citation: A. I. Budkin, “$\omega$-Independent bases for quasivarieites of torsion-free groups”, Algebra Logika, 58:3 (2019), 320–333; Algebra and Logic, 58:3 (2019), 214–223

Citation in format AMSBIB
\Bibitem{Bud19}
\by A.~I.~Budkin
\paper $\omega$-Independent bases for quasivarieites
of torsion-free groups
\jour Algebra Logika
\yr 2019
\vol 58
\issue 3
\pages 320--333
\mathnet{http://mi.mathnet.ru/al897}
\crossref{https://doi.org/10.33048/alglog.2019.58.302}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 3
\pages 214--223
\crossref{https://doi.org/10.1007/s10469-019-09539-x}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000494787600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074831445}


Linking options:
  • http://mi.mathnet.ru/eng/al897
  • http://mi.mathnet.ru/eng/al/v58/i3/p320

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Kravchenko, A. M. Nurakunov, M. V. Schwidefsky, “Structure of quasivariety lattices. III. Finitely partitionable bases”, Algebra and Logic, 59:3 (2020), 222–229  mathnet  crossref  crossref  isi
    2. M. V. Schwidefsky, “On sufficient conditions for $Q$-universality”, Sib. elektron. matem. izv., 17 (2020), 1043–1051  mathnet  crossref
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:114
    References:4
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021