Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2019, Volume 58, Number 3, Pages 363–369 (Mi al900)  

Lattices of boundedly axiomatizable $\forall$-subclasses of $\forall$-classes of universal algebras

A. G. Pinus

Novosibirsk State Technical University

Abstract: The question about the structure of lattices of subclasses of various classes of algebras is one of the basic ones in universal algebra. The case under consideration most frequently concerns lattices of subvarieties (subquasivarieties) of varieties (quasivarieties) of universal algebras. A similar question is also meaningful for other classes of algebras, in particular, for universal classes of algebras. The union of two $\forall$-classes is itself a $\forall$-class, hence such lattices are distributive. As a rule, those lattices of subclasses are rather large and are not simply structured. In this connection, it is of interest to distinguish some sublattices of such lattices that would model certain properties of the lattices themselves. The present paper deals with a similar problem for $\forall$-classes and varieties of universal algebras.

Keywords: $\forall$-class of universal algebras, variety of universal algebras, lattice of subclasses of class of algebras.

DOI: https://doi.org/10.33048/alglog.2019.58.305

Full text: PDF file (149 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2019, 58:3, 244–248

Bibliographic databases:

UDC: 512.57
Received: 29.11.2017
Revised: 24.09.2019

Citation: A. G. Pinus, “Lattices of boundedly axiomatizable $\forall$-subclasses of $\forall$-classes of universal algebras”, Algebra Logika, 58:3 (2019), 363–369; Algebra and Logic, 58:3 (2019), 244–248

Citation in format AMSBIB
\Bibitem{Pin19}
\by A.~G.~Pinus
\paper Lattices of boundedly axiomatizable $\forall$-subclasses of
$\forall$-classes of universal algebras
\jour Algebra Logika
\yr 2019
\vol 58
\issue 3
\pages 363--369
\mathnet{http://mi.mathnet.ru/al900}
\crossref{https://doi.org/10.33048/alglog.2019.58.305}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 3
\pages 244--248
\crossref{https://doi.org/10.1007/s10469-019-09542-2}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000494787600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075019431}


Linking options:
  • http://mi.mathnet.ru/eng/al900
  • http://mi.mathnet.ru/eng/al/v58/i3/p363

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:86
    References:3
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021