Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2019, Volume 58, Number 4, Pages 467–478 (Mi al909)  

Universal equivalence of linear groups over local commutative rings with $1/2$

G. A. Kaleeva

Lomonosov Moscow State University

Abstract: It is proved that the universal equivalence of general or special linear groups of orders greater than $2$ over local commutative rings with $1/2$ is equivalent to the coincidence of orders of groups and universal equivalence of respective rings.

Keywords: universal equivalence, general linear groups, special linear groups, local rings.

Funding Agency Grant Number
Russian Science Foundation 16-11-10013
G. A. Kaleeva Supported by Russian Science Foundation, project No. 16-11-10013.


DOI: https://doi.org/10.33048/alglog.2019.58.403

Full text: PDF file (198 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2019, 58:4, 313–321

Bibliographic databases:

UDC: 510.67:512.54.0:512.643
Received: 04.06.2018
Revised: 08.11.2019

Citation: G. A. Kaleeva, “Universal equivalence of linear groups over local commutative rings with $1/2$”, Algebra Logika, 58:4 (2019), 467–478; Algebra and Logic, 58:4 (2019), 313–321

Citation in format AMSBIB
\Bibitem{Kal19}
\by G.~A.~Kaleeva
\paper Universal equivalence of linear groups over local commutative
rings with $1/2$
\jour Algebra Logika
\yr 2019
\vol 58
\issue 4
\pages 467--478
\mathnet{http://mi.mathnet.ru/al909}
\crossref{https://doi.org/10.33048/alglog.2019.58.403}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 4
\pages 313--321
\crossref{https://doi.org/10.1007/s10469-019-09552-0}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000501536600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075236830}


Linking options:
  • http://mi.mathnet.ru/eng/al909
  • http://mi.mathnet.ru/eng/al/v58/i4/p467

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:106
    References:5
    First page:9

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022