RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2019, Volume 58, Number 4, Pages 512–527 (Mi al913)  

Prime and homogeneous rings and algebras

E. I. Timoshenko

Novosibirsk State Technical University

Abstract: Let $\mathcal M$ be a structure of a signature $\Sigma$. For any ordered tuple $\overline{a}=(a_1,\ldots,a_n)$ of elements of $\mathcal M$, $\mathrm{ tp}^{\mathcal M}(\overline{a})$ denotes the set of formulas $\theta(x_1,\ldots,x_n)$ of a first-order language over $\Sigma$ with free variables $x_1,\ldots,x_n$ such that $\mathcal M\models\theta(a_1,\ldots,a_n)$.
A structure $\mathcal M$ is said to be strongly $\omega$-homogeneous if, for any finite ordered tuples $\overline{a}$ and $\overline{b}$ of elements of $\mathcal M$, the coincidence of $\mathrm{ tp}^{\mathcal M}(\overline{a})$ and $\mathrm{ tp}^{\mathcal M}(\overline{b})$ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure $\mathcal M$. A structure $\mathcal M$ is said to be prime in its theory if it is elementarily embedded in every structure of the theory $\mathrm{ Th} (\mathcal M)$.
It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly $\omega$-homogeneous.

Keywords: homogeneous structure, structure prime in its theory, relatively free structure, orderable group, group ring, nilpotent algebra, nilpotent ring, associative ring, Lie ring.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00100_а


DOI: https://doi.org/10.33048/alglog.2019.58.407

Full text: PDF file (245 kB)
First page: PDF file
References: PDF file   HTML file

UDC: 512.5
Received: 12.12.2018
Revised: 08.11.2019

Citation: E. I. Timoshenko, “Prime and homogeneous rings and algebras”, Algebra Logika, 58:4 (2019), 512–527

Citation in format AMSBIB
\Bibitem{Tim19}
\by E.~I.~Timoshenko
\paper Prime and homogeneous rings and algebras
\jour Algebra Logika
\yr 2019
\vol 58
\issue 4
\pages 512--527
\mathnet{http://mi.mathnet.ru/al913}
\crossref{https://doi.org/10.33048/alglog.2019.58.407}


Linking options:
  • http://mi.mathnet.ru/eng/al913
  • http://mi.mathnet.ru/eng/al/v58/i4/p512

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:63
    References:5
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020