Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2019, Volume 58, Number 6, Pages 706–713 (Mi al924)  

The $d$-rank of an $\alpha$-space does not exceed $1$

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: It is proved that the $d$-rank of an arbitrary $\alpha$-space does not exceed $1$.

Keywords: $\alpha$-space, $d$-rank.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-01-00624_а
Supported by RFBR, project No. 18-01-00624.


DOI: https://doi.org/10.33048/alglog.2019.58.602

Full text: PDF file (172 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2020, 58:6, 470–474

Bibliographic databases:

UDC: 515.125
Received: 14.01.2019
Revised: 12.02.2020

Citation: Yu. L. Ershov, “The $d$-rank of an $\alpha$-space does not exceed $1$”, Algebra Logika, 58:6 (2019), 706–713; Algebra and Logic, 58:6 (2020), 470–474

Citation in format AMSBIB
\Bibitem{Ers19}
\by Yu.~L.~Ershov
\paper The $d$-rank of an $\alpha$-space does not exceed~$1$
\jour Algebra Logika
\yr 2019
\vol 58
\issue 6
\pages 706--713
\mathnet{http://mi.mathnet.ru/al924}
\crossref{https://doi.org/10.33048/alglog.2019.58.602}
\transl
\jour Algebra and Logic
\yr 2020
\vol 58
\issue 6
\pages 470--474
\crossref{https://doi.org/10.1007/s10469-020-09566-z}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000518462600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081543533}


Linking options:
  • http://mi.mathnet.ru/eng/al924
  • http://mi.mathnet.ru/eng/al/v58/i6/p706

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:121
    References:14
    First page:15

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021