Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2004, Volume 43, Number 5, Pages 589–602 (Mi al93)  

Fixed Points in Tense Models

S. I. Mardaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We study into definability of least fixed points in tense logic. It is proved that least fixed points of tense positive $\Sigma$-operators are definable in transitive linear models. Examples are furnished showing that the least fixed points of tense positive operators may fail to be definable in the class of finite linearly ordered models, and the class of finite strictly linearly ordered models. Moreover, in dealing with the modal case, we point out examples of the non-definable inflationary points in the model classes mentioned.

Keywords: tense logic, least fixed points, class of finite linearly ordered models, class of finite strictly linearly ordered models, modal models, inflationary points

Full text: PDF file (183 kB)
References: PDF file   HTML file

English version:
Algebra and Logic, 2004, 43:5, 331–338

Bibliographic databases:

UDC: 510.64
Received: 22.05.2003

Citation: S. I. Mardaev, “Fixed Points in Tense Models”, Algebra Logika, 43:5 (2004), 589–602; Algebra and Logic, 43:5 (2004), 331–338

Citation in format AMSBIB
\Bibitem{Mar04}
\by S.~I.~Mardaev
\paper Fixed Points in Tense Models
\jour Algebra Logika
\yr 2004
\vol 43
\issue 5
\pages 589--602
\mathnet{http://mi.mathnet.ru/al93}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2112061}
\zmath{https://zbmath.org/?q=an:1097.03014}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 5
\pages 331--338
\crossref{https://doi.org/10.1023/B:ALLO.0000044282.87666.d1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249084913}


Linking options:
  • http://mi.mathnet.ru/eng/al93
  • http://mi.mathnet.ru/eng/al/v43/i5/p589

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:259
    Full text:83
    References:39
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021