Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra Logika, 2020, Volume 59, Number 2, Pages 190–214 (Mi al943)  

A restricted fragment of the Lambek calculus with iteration and intersection operations

S. L. Kuznetsova, N. S. Ryzhkovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University

Abstract: The Lambek calculus (a variant of intuitionistic linear logic initially introduced for mathematical linguistics) enjoys natural interpretations over the algebra of formal languages ($\mathrm{L}$-models) and over the algebra of binary relations which are subsets of a given transitive relation (R-models). For both classes of models there are completeness theorems (Andréka and Mikulás [J. Logic Lang. Inf., 3, No. 1 (1994), 1—37]; Pentus [Ann. Pure Appl. Logic, 75, Nos. 1/2 (1995), 179—213; Fund. Prikl. Mat., 5, No. 1 (1999), 193—219]). The operations of the Lambek calculus include product and two divisions, left and right. We consider an extension of the Lambek calculus with intersection and iteration (Kleene star). It is proved that this extension is incomplete both w.r.t. $\mathrm{L}$-models and w.r.t. $\mathrm{R}$-models. We introduce a restricted fragment, in which iteration is allowed only in denominators of division operations. For this fragment we prove completeness w.r.t. $\mathrm{R}$-models. We also prove completeness w.r.t. $\mathrm{L}$-models for the subsystem without product. Both results are strong completeness theorems, that is, they establish equivalence between derivability from sets of hypotheses (finite or infinite) and semantic entailment from sets of hypotheses on the given class of models. Finally, we prove $\Pi_1^0$-completeness of the algorithmic problem of derivability in the restricted fragment in question.

Keywords: Lambek calculus, Kleene iteration, algebra of formal languages, algebra of binary relations, complexity of derivability problem.

Funding Agency Grant Number
Russian Science Foundation 16-11-10252


DOI: https://doi.org/10.33048/alglog.2020.59.203

Full text: PDF file (410 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Algebra and Logic, 2020, 59:2, 129–146

Bibliographic databases:

UDC: 510.649
Received: 30.07.2019
Revised: 14.07.2020

Citation: S. L. Kuznetsov, N. S. Ryzhkova, “A restricted fragment of the Lambek calculus with iteration and intersection operations”, Algebra Logika, 59:2 (2020), 190–214; Algebra and Logic, 59:2 (2020), 129–146

Citation in format AMSBIB
\Bibitem{KuzRyz20}
\by S.~L.~Kuznetsov, N.~S.~Ryzhkova
\paper A restricted fragment of the Lambek calculus with iteration and intersection operations
\jour Algebra Logika
\yr 2020
\vol 59
\issue 2
\pages 190--214
\mathnet{http://mi.mathnet.ru/al943}
\crossref{https://doi.org/10.33048/alglog.2020.59.203}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4147801}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 2
\pages 129--146
\crossref{https://doi.org/10.1007/s10469-020-09586-9}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000553738100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088795962}


Linking options:
  • http://mi.mathnet.ru/eng/al943
  • http://mi.mathnet.ru/eng/al/v59/i2/p190

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Алгебра и логика Algebra and Logic
    Number of views:
    This page:92
    References:12
    First page:14

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021