RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ann. of Math. (2), 2015, Volume 181, Issue 2, Pages 415–472 (Mi aom1)  

This article is cited in 3 scientific papers (total in 3 papers)

Pseudorandom generators hard for $k$-DNF resolution and polynomial calculus resolution

A. A. Razborovab

a Institute for Advanced Study, Princeton, NJ, On leave from Steklov Mathematical Institute, Moscow, Russia
b Department of Computer Science, University of Chicago, Chicago, IL

Funding Agency Grant Number
Russian Foundation for Basic Research 02-02-01290
Supported by The State of New Jersey and by the RFBR grant 02-02-01290.


DOI: https://doi.org/10.4007/annals.2015.181.2.1


Bibliographic databases:

Received: 19.03.2003
Revised: 28.05.2014
Accepted:28.08.2014
Language:

Linking options:
  • http://mi.mathnet.ru/eng/aom1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Atserias, M. Müller, S. Oliva, “Lower bounds for DNF-refutations of a relativized weak pigeonhole principle”, J. Symb. Log., 80:2 (2015), 450–476  crossref  mathscinet  isi  scopus
    2. J. Pich,, “Logical strength of complexity theory and a formalization of the PCP theorem in bounded arithmetic”, Log. Methods Comput. Sci., 11:2 (2015), 8, 38 pp.  mathscinet
    3. J. Pich, “Circuit lower bounds in bounded arithmetics”, Ann. Pure Appl. Logic, 166:1 (2015), 29–45  crossref  mathscinet  isi
  • Number of views:
    This page:117

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020