RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomat. i Telemekh., 2007, Issue 7, Pages 74–89 (Mi at1018)  

This article is cited in 7 scientific papers (total in 7 papers)

Adaptive and Robust Systems

Adaptive observer-based synchronization of the nonlinear nonpassifiable systems

B. R. Andrieskya, V. O. Nikiforovb, A. L. Fradkova

a Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University of Information Technologies, Mechanics and Optics

Abstract: The general approach to synchronization of the dynamic systems on the bassis on the adaptive observer and the passification method was extended to the nonpassifiable nonlinear systems – in particular, to those whose model has the relative order higher than one. Two schemes of synchronization relying on the extended-error adaptive observers and the high-order tuning algorithms were proposed. Solution of the problem of synchronization relies on a new canonical form of the adaptive observer. The conditions for convergence of the parameter estimates to the true values in the case of no system noise were established, and also robustness of the adaptive synchronization to the bounded measurement error was proved. The feasibility of information transmission by modulation of the chaotic signal with the use of the proposed method was demonstrated by the example of the controllable Lorentz system.

Full text: PDF file (525 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2007, 68:7, 1186–1200

Bibliographic databases:

PACS: 02.30.Yy
Presented by the member of Editorial Board: Б. Т. Поляк

Received: 04.12.2006

Citation: B. R. Andriesky, V. O. Nikiforov, A. L. Fradkov, “Adaptive observer-based synchronization of the nonlinear nonpassifiable systems”, Avtomat. i Telemekh., 2007, no. 7, 74–89; Autom. Remote Control, 68:7 (2007), 1186–1200

Citation in format AMSBIB
\Bibitem{AndNikFra07}
\by B.~R.~Andriesky, V.~O.~Nikiforov, A.~L.~Fradkov
\paper Adaptive observer-based synchronization of the nonlinear nonpassifiable systems
\jour Avtomat. i Telemekh.
\yr 2007
\issue 7
\pages 74--89
\mathnet{http://mi.mathnet.ru/at1018}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2341647}
\zmath{https://zbmath.org/?q=an:1141.93315}
\transl
\jour Autom. Remote Control
\yr 2007
\vol 68
\issue 7
\pages 1186--1200
\crossref{https://doi.org/10.1134/S0005117907070077}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547207039}


Linking options:
  • http://mi.mathnet.ru/eng/at1018
  • http://mi.mathnet.ru/eng/at/y2007/i7/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Autom. Remote Control, 72:9 (2011), 1967–1980  mathnet  crossref  isi
    2. Fradkov A.L., Andrievsky B., Evans R.J., “Synchronization of nonlinear systems under information constraints”, Chaos, 18:3 (2008), 037109  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Loria A., Panteley E., Zavala-Rio A., “Adaptive Observers With Persistency of Excitation for Synchronization of Chaotic Systems”, IEEE Trans Circuits Syst I Regul Pap, 56:12 (2009), 2703–2716  crossref  mathscinet  isi  scopus
    4. Dimassi H., Loria A., “Adaptive Unknown-Input Observers-Based Synchronization of Chaotic Systems for Telecommunication”, IEEE Trans Circuits Syst I Regul Pap, 58:4 (2011), 800–812  crossref  mathscinet  isi  scopus
    5. Illing L., Fordyce R.F., Saunders A.M., Ormond R., “Experiments with a Malkus-Lorenz water wheel: Chaos and Synchronization”, American Journal of Physics, 80:3 (2012), 192–202  crossref  adsnasa  isi  scopus
    6. Illing L., Saunders A.M., Hahs D., “Multi-Parameter Identification From Scalar Time Series Generated by a Malkus-Lorenz Water Wheel”, Chaos, 22:1 (2012), 013127  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Fradkov A.L., Andrievsky B., Pavlov A., “Information Transmission Over the Limited-Rate Communication Channel By Chaotic Signal Modulation and Non-Linear Observer”, IFAC PAPERSONLINE, 51:33 (2018), 91–96  crossref  isi  scopus
  • Avtomatika i Telemekhanika
    Number of views:
    This page:285
    Full text:108
    References:22
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020