RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Автомат. и телемех.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Автомат. и телемех., 2006, выпуск 3, страницы 131–142 (Mi at1156)  

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

Адаптивные и робастные системы

Об одной задаче управления при неполной информации

М. С. Близорукова, В. И. Максимов

Институт математики и механики УрО РАН

Аннотация: Рассматривается задача робастного управления системой обыкновенных дифференциальных уравнений. Предполагается, что на систему наряду с управлением действует неконтролируемое возмущение. Указывается устойчивый к информационным помехам и погрешностям вычислений алгоритм решения задачи в случае неполной информации о фазовой траектории (измерении части координат).

Полный текст: PDF файл (245 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Automation and Remote Control, 2006, 67:3, 461–471

Реферативные базы данных:

Тип публикации: Статья
PACS: 02.30.Yy
Статья представлена к публикации членом редколлегии: А. П. Курдюков

Поступила в редакцию: 14.02.2005

Образец цитирования: М. С. Близорукова, В. И. Максимов, “Об одной задаче управления при неполной информации”, Автомат. и телемех., 2006, № 3, 131–142; Autom. Remote Control, 67:3 (2006), 461–471

Цитирование в формате AMSBIB
\RBibitem{BliMak06}
\by М.~С.~Близорукова, В.~И.~Максимов
\paper Об одной задаче управления при неполной информации
\jour Автомат. и телемех.
\yr 2006
\issue 3
\pages 131--142
\mathnet{http://mi.mathnet.ru/at1156}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2218491}
\zmath{https://zbmath.org/?q=an:1125.93335}
\transl
\jour Autom. Remote Control
\yr 2006
\vol 67
\issue 3
\pages 461--471
\crossref{https://doi.org/10.1134/S0005117906030106}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645319703}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/at1156
  • http://mi.mathnet.ru/rus/at/y2006/i3/p131

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. И. Максимов, “Об отслеживании эталонного решения управляемой системы уравнений фазового поля”, Дифференциальные уравнения и топология. II, Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Тр. МИАН, 271, МАИК «Наука/Интерпериодика», М., 2010, 148–158  mathnet  mathscinet  elib; V. I. Maksimov, “Tracking a reference solution of a control system of phase field equations”, Proc. Steklov Inst. Math., 271 (2010), 138–148  crossref  isi
    2. В. И. Максимов, “О построении алгоритма реконструкции-управления одной эколого-экономической моделью”, Тр. ИММ УрО РАН, 19, № 4, 2013, 142–154  mathnet  mathscinet  elib; V. I. Maksimov, “On designing a reconstruction-control algorithm for an ecological-economic model”, Proc. Steklov Inst. Math. (Suppl.), 287, suppl. 1 (2014), 102–115  crossref  isi
    3. Kapustyan V., Maksimov V., “On Attaining the Prescribed Quality of a Controlled Fourth Order System”, Int. J. Appl. Math. Comput. Sci., 24:1 (2014), 75–85  crossref  mathscinet  zmath  isi  elib  scopus
    4. В. С. Кубланов, В. И. Максимов, “Об управлении по принципу обратной связи системой с последействием при неполной информации о фазовых координатах”, Труды Седьмой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям (Москва, 22–29 августа, 2014). Часть 1, СМФН, 58, РУДН, М., 2015, 111–127  mathnet; V. S. Kublanov, V. I. Maksimov, “On feedback-principle control for systems with aftereffect under incomplete phase-coordinate data”, Journal of Mathematical Sciences, 233:4 (2018), 495–513  crossref
    5. Maksimov V.I., “Differential Guidance Game With Incomplete Information on the State Coordinates and Unknown Initial State”, Differ. Equ., 51:12 (2015), 1656–1665  crossref  mathscinet  zmath  isi  elib  scopus
    6. В. И. Максимов, “Об одной задаче гарантированного наведения при неполной информации”, Тр. ИММ УрО РАН, 22, № 2, 2016, 199–210  mathnet  crossref  mathscinet  elib; V. I. Maksimov, “On a guaranteed guidance problem under incomplete information”, Proc. Steklov Inst. Math. (Suppl.), 297, suppl. 1 (2017), 147–158  crossref  isi
    7. В. И. Максимов, “Об одной задаче управления линейной системой при неполной информации о фазовых координатах”, Автомат. и телемех., 2016, № 6, 3–21  mathnet  elib; V. I. Maksimov, “On a problem of linear system control under incomplete information about the phase coordinates”, Autom. Remote Control, 77:6 (2016), 943–958  crossref  isi  elib
    8. Maksimov V.I., “Problem of Guaranteed Guidance By Measuring Part of the State Vector Coordinates”, Differ. Equ., 53:11 (2017), 1449–1457  crossref  mathscinet  zmath  isi  scopus
    9. В. Л. Розенберг, “К задаче динамического восстановления возмущения при дефиците информации”, Тр. ИММ УрО РАН, 25, № 1, 2019, 207–218  mathnet  crossref  elib
  • Автоматика и телемеханика
    Просмотров:
    Эта страница:212
    Полный текст:85
    Литература:41
    Первая стр.:1
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020