General information
Latest issue
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Avtomat. i Telemekh.:

Personal entry:
Save password
Forgotten password?

Avtomat. i Telemekh., 2014, Issue 12, Pages 28–41 (Mi at14161)  

This article is cited in 10 scientific papers (total in 10 papers)

Nonlinear Systems

Basic oscillation mode in the coupled-subsystems model

I. N. Barabanova, A. T. Tureshbaevb, V. N. Tkhaia

a Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
b Kzylorda State University, Kzylorda, Kazakhstan

Abstract: Consideration was given to the model obeying a system of ordinary differential equations where the subsystems are systems of autonomous ordinary differential equations. If the coupling parameter $\varepsilon=0$, then the model falls apart into decoupled subsystems. For a model consisting of coupled subsystems, considered was the main mode for which the problems of oscillations, bifurcation, and stability were solved, and the results obtained before for the case of two second-order subsystems were generalized.

Full text: PDF file (214 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2014, 75:12, 2112–2123

Bibliographic databases:

Presented by the member of Editorial Board: А. М. Красносельский

Received: 11.03.2014

Citation: I. N. Barabanov, A. T. Tureshbaev, V. N. Tkhai, “Basic oscillation mode in the coupled-subsystems model”, Avtomat. i Telemekh., 2014, no. 12, 28–41; Autom. Remote Control, 75:12 (2014), 2112–2123

Citation in format AMSBIB
\by I.~N.~Barabanov, A.~T.~Tureshbaev, V.~N.~Tkhai
\paper Basic oscillation mode in the coupled-subsystems model
\jour Avtomat. i Telemekh.
\yr 2014
\issue 12
\pages 28--41
\jour Autom. Remote Control
\yr 2014
\vol 75
\issue 12
\pages 2112--2123

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. Barabanov, V. Tkhai, “Oscillations of weakly coupled identical systems”, 2015 International Conference on Mechanics Seventh Polyakhovs Reading, ed. A. Tikhonov, IEEE, 2015  isi
    2. I. N. Barabanov, V. N. Tkhai, “Oscillation family in weakly coupled identical systems”, Autom. Remote Control, 77:4 (2016), 561–568  mathnet  crossref  isi  elib
    3. I. N. Barabanov, V. N. Tkhai, “A family of oscillations in the model containing coupled subsystems”, Proceedings of 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), ed. V. Tkhai, IEEE, 2016  mathscinet  isi
    4. I. N. Barabanov, V. N. Tkhai, “Construction of a stable cycle in weakly coupled identical systems”, Autom. Remote Control, 78:2 (2017), 217–223  mathnet  crossref  mathscinet  isi  elib
    5. M. A. Kovaleva, V. V. Smirnov, L. I. Manevich, “Statsionarnaya i nestatsionarnaya dinamika sistemy dvukh garmonicheski svyazannykh mayatnikov”, Nelineinaya dinam., 13:1 (2017), 105–115  mathnet  crossref  elib
    6. V. N. Tkhai, “Model containing coupled subsystems with oscillations of different types”, Autom. Remote Control, 78:4 (2017), 595–607  mathnet  crossref  mathscinet  isi  elib
    7. V. N. Tkhai, “Stabilization of oscillations in a coupled periodic system”, Autom. Remote Control, 78:11 (2017), 1967–1977  mathnet  crossref  isi  elib
    8. I. N. Barabanov, V. N. Tkhai, “Natural stabilization of the oscillation in the coupled periodical system”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, eds. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, 080008-1  crossref  isi  scopus
    9. I. N. Barabanov, V. N. Tkhai, “Stabilization of oscillations in a periodic system by choosing appropriate couplings”, Autom. Remote Control, 79:12 (2018), 2128–2135  mathnet  crossref  crossref  isi  elib
    10. Kovaleva M. Smirnov V. Manevitch L., “Nonstationary Dynamics of the Sine Lattice Consisting of Three Pendula (Trimer)”, Phys. Rev. E, 99:1 (2019), 012209  crossref  isi  scopus
  • Avtomatika i Telemekhanika
    Number of views:
    This page:133
    Full text:38
    First page:18

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020