RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomat. i Telemekh., 2005, Issue 9, Pages 27–39 (Mi at1430)  

This article is cited in 6 scientific papers (total in 6 papers)

Deterministic Systems

Oscillativity of two-dimensional bilinear systems

V. N. Zhermolenko

Gubkin Russian State University of Oil and Gas, Moscow, Russia

Abstract: Consideration was given to the linear nonstationary systems whose coefficients are known only to be arbitrary measurable functions satisfying the interval constraints. Notions of oscillativity and nonoscillativity of these bilinear systems were introduced, and their oscillatory properties were studied exhaustively.

Full text: PDF file (228 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2005, 66:9, 1384–1395

Bibliographic databases:

Presented by the member of Editorial Board: Л. Б. Рапопорт

Received: 15.11.2004

Citation: V. N. Zhermolenko, “Oscillativity of two-dimensional bilinear systems”, Avtomat. i Telemekh., 2005, no. 9, 27–39; Autom. Remote Control, 66:9 (2005), 1384–1395

Citation in format AMSBIB
\Bibitem{Zhe05}
\by V.~N.~Zhermolenko
\paper Oscillativity of two-dimensional bilinear systems
\jour Avtomat. i Telemekh.
\yr 2005
\issue 9
\pages 27--39
\mathnet{http://mi.mathnet.ru/at1430}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2172619}
\elib{http://elibrary.ru/item.asp?id=16316393}
\transl
\jour Autom. Remote Control
\yr 2005
\vol 66
\issue 9
\pages 1384--1395
\crossref{https://doi.org/10.1007/s10513-005-0179-x}
\elib{http://elibrary.ru/item.asp?id=13483254}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-26044445798}


Linking options:
  • http://mi.mathnet.ru/eng/at1430
  • http://mi.mathnet.ru/eng/at/y2005/i9/p27

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Zhermolenko, “Periodic motions and criteria of absolute stability, instability, and controllability of two-dimensional bilinear systems”, Autom. Remote Control, 67:8 (2006), 1194–1214  mathnet  crossref  mathscinet  zmath
    2. M. R. Liberzon, “Essays on the absolute stability theory”, Autom. Remote Control, 67:10 (2006), 1610–1644  mathnet  crossref  mathscinet  zmath  elib  elib
    3. Zhermolenko V.N., “Trajectory funnels of two-dimensional bilinear control systems”, Journal of Computer and Systems Sciences International, 45:2 (2006), 191–203  crossref  mathscinet  zmath  isi  scopus
    4. Zhermolenko V.N., “Phase portraits of two-dimensional bilinear control systems”, Journal of Computer and Systems Sciences International, 45:3 (2006), 345–355  crossref  mathscinet  zmath  isi  scopus
    5. Fan H., Wen Ch., Xie W., “Research on the stability of two-dimensional bilinear systems”, Iciea 2007: 2nd IEEE Conference on Industrial Electronics and Applications, IEEE Conference on Industrial Electronics and Applications, 2007, 373–378  isi
    6. Zhermolenko V., Poznyak A., “Criteria of Robust Stability For Time-Varying. Dwang-Mitchel Differential Systems: Integral Funnel Method”, Int. J. Control, 89:11 (2016), 2297–2310  crossref  mathscinet  zmath  isi  scopus
  • Avtomatika i Telemekhanika
    Number of views:
    This page:137
    Full text:42
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020