|
Avtomat. i Telemekh., 2011, Issue 9, Pages 13–27
(Mi at2270)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Topical issue
Hamilton–Jacobi inequalities and the optimality conditions in the problems of control with common end constraints
V. A. Dykhta, S. P. Sorokin Institute of System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
Abstract:
The canonical theory of the necessary and sufficient conditions for global optimality based on the sets of nonsmooth solutions of the differential Hamilton–Jacobi inequalities of two classes of weakly and strongly monotone Lyapunov type functions was developed. These functions enable one to estimate from above and below the objective functional of the optimal control problem and determine the internal and external approximations of the reachability set of the controlled dynamic system.
Full text:
PDF file (258 kB)
References:
PDF file
HTML file
English version:
Automation and Remote Control, 2011, 72:9, 1808–1821
Bibliographic databases:
Presented by the member of Editorial Board: Л. Б. Рапопорт
Received: 12.04.2011
Citation:
V. A. Dykhta, S. P. Sorokin, “Hamilton–Jacobi inequalities and the optimality conditions in the problems of control with common end constraints”, Avtomat. i Telemekh., 2011, no. 9, 13–27; Autom. Remote Control, 72:9 (2011), 1808–1821
Citation in format AMSBIB
\Bibitem{DykSor11}
\by V.~A.~Dykhta, S.~P.~Sorokin
\paper Hamilton--Jacobi inequalities and the optimality conditions in the problems of control with common end constraints
\jour Avtomat. i Telemekh.
\yr 2011
\issue 9
\pages 13--27
\mathnet{http://mi.mathnet.ru/at2270}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2896149}
\zmath{https://zbmath.org/?q=an:1245.49032}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 9
\pages 1808--1821
\crossref{https://doi.org/10.1134/S0005117911090037}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000297404400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155176203}
Linking options:
http://mi.mathnet.ru/eng/at2270 http://mi.mathnet.ru/eng/at/y2011/i9/p13
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. P. Sorokin, “Bipozitsionnye resheniya neravenstv Gamiltona–Yakobi v neklassicheskikh lineino-kvadratichnykh zadachakh optimalnogo upravleniya”, Programmnye sistemy: teoriya i prilozheniya, 3:5 (2012), 33–44
-
Gornov A.Yu., Zarodnyuk T.S., Finkelstein E.A., Anikin A.S., “The Method of Uniform Monotonous Approximation of the Reachable Set Border For a Controllable System”, J. Glob. Optim., 66:1, SI (2016), 53–64
-
S. P. Sorokin, “Otsenki mnozhestv dostizhimosti i dostatochnoe uslovie optimalnosti v zadachakh upravleniya diskretnymi dinamicheskimi sistemami”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 178–183
|
Number of views: |
This page: | 320 | Full text: | 60 | References: | 42 | First page: | 16 |
|