RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов
Загрузить рукопись

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Автомат. и телемех.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Автомат. и телемех., 1997, выпуск 9, страницы 125–137 (Mi at2672)  

Эта публикация цитируется в 69 научных статьях (всего в 69 статьях)

Моделирование поведения и интеллекта

Матричная теорема о лесах и измерение связей в малых социальных группах

П. Ю. Чеботарев, Е. В. Шамис

Институт проблем управления РАН, г. Москва

Аннотация: Предложено семейство структурных индексов графов, связанное с матричной теоремой о лесах. Подробно исследуются свойства основного индекса, выражающего связанность двух вершин друг с другом. Производные индексы измеряют “уединенность” вершины, “разобщенность” вершин, “периферийность” вершины. Вводится нестандартное расстояние на множестве вершин, зависящее от показателя связности. Обсуждается использование предложенных индексов в социометрии.

Полный текст: PDF файл (1917 kB)

Англоязычная версия:
Automation and Remote Control, 1997, 58:9, 1505–1514

Реферативные базы данных:
Тип публикации: Статья
УДК: 519.172

Поступила в редакцию: 23.12.1996

Образец цитирования: П. Ю. Чеботарев, Е. В. Шамис, “Матричная теорема о лесах и измерение связей в малых социальных группах”, Автомат. и телемех., 1997, № 9, 125–137; Autom. Remote Control, 58:9 (1997), 1505–1514

Цитирование в формате AMSBIB
\RBibitem{CheSha97}
\by П.~Ю.~Чеботарев, Е.~В.~Шамис
\paper Матричная теорема о лесах и измерение связей в малых социальных группах
\jour Автомат. и телемех.
\yr 1997
\issue 9
\pages 125--137
\mathnet{http://mi.mathnet.ru/at2672}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1609615}
\zmath{https://zbmath.org/?q=an:0920.92042}
\transl
\jour Autom. Remote Control
\yr 1997
\vol 58
\issue 9
\pages 1505--1514


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/at2672
  • http://mi.mathnet.ru/rus/at/y1997/i9/p125

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Chebotarev P. Agaev R., “Forest Matrices Around the Laplacian Matrix”, Linear Alg. Appl., 356 (2002), 253–274  crossref  mathscinet  zmath  isi  scopus
    2. Zhang X., “A Note on Doubly Stochastic Graph Matrices”, Linear Alg. Appl., 407 (2005), 196–200  crossref  mathscinet  zmath  isi  elib  scopus
    3. Zhang X., Wu J., “Doubly Stochastic Matrices of Trees”, Appl. Math. Lett., 18:3 (2005), 339–343  crossref  mathscinet  zmath  isi  elib  scopus
    4. Fouss F., Yen L., Pirotte A., Saerens M., “An Experimental Investigation of Graph Kernels on a Collaborative Recommendation Task”, Icdm 2006: Sixth International Conference on Data Mining, Proceedings, IEEE International Conference on Data Mining, eds. Clifton C., Zhong N., Liu J., Wah B., Wu X., IEEE Computer Soc, 2006, 863–868  isi
    5. Fouss F. Pirotte A. Renders J.-M. Saerens M., “Random-Walk Computation of Similarities Between Nodes of a Graph with Application to Collaborative Recommendation”, IEEE Trans. Knowl. Data Eng., 19:3 (2007), 355–369  crossref  isi  elib  scopus
    6. Pucci A., Cori M., Maggini M., “A Random-Walk Based Scoring Algorithm Applied to Recommender Engines”, Advances in Web Mining and Web Usage Analysis, Lecture Notes in Computer Science, 4811, eds. Nasaouri O., Spiliopoulou M., Srivastava J., Mobasher B., Masand B., Springer-Verlag Berlin, 2007, 127–146  crossref  isi
    7. Zhang X.-D., “Doubly Stochastic Graph Matrices”, Proceedings of the 14th Conference of International Linear Algebra Society, eds. Jiang E., Gu C., Xu Y., World Acad Union-World Acad Press, 2007, 448–450  adsnasa  isi
    8. Р. П. Агаев, “Об исследовании и применении лапласовских спектров орграфов кольцевой структуры”, Автомат. и телемех., 2008, № 2, 3–16  mathnet  mathscinet  zmath; R. P. Agaev, “Investigation and application of Laplace spectra of orgraphs with the ring structure”, Autom. Remote Control, 69:2 (2008), 177–188  crossref  isi
    9. Chebotarev P., “Spanning Forests and the Golden Ratio”, Discrete Appl. Math., 156:5 (2008), 813–821  crossref  mathscinet  zmath  isi  elib  scopus
    10. Callut J., Francoisse K., Saerens M., Dupont P., “Semi-Supervised Classification From Discriminative Random Walks”, Machine Learning and Knowledge Discovery in Databases, Part I, Proceedings, Lecture Notes in Artificial Intelligence, 5211, no. Part i, eds. Daelemans W., Goethals B., Morik K., Springer-Verlag Berlin, 2008, 162–177  isi
    11. Kunegis J., Lommatzsch A., Bauckhage Ch., “Alternative Similarity Functions for Graph Kernels”, 19th International Conference on Pattern Recognition, Vols 1-6, International Conference on Pattern Recognition, IEEE, 2008, 2408–2411  isi
    12. Shang M.-Sh., Jin C.-H., Zhou T., Zhang Y.-Ch., “Collaborative Filtering Based on Multi-Channel Diffusion”, Physica A, 388:23 (2009), 4867–4871  crossref  adsnasa  isi  elib  scopus
    13. Zhou T., Lu L., Zhang Y.-Ch., “Predicting Missing Links via Local Information”, Eur. Phys. J. B, 71:4 (2009), 623–630  crossref  zmath  adsnasa  isi  scopus
    14. Shimbo M., Ito T., Mochihashi D., Matsumoto Yu., “On the Properties of Von Neumann Kernels for Link Analysis”, Mach. Learn., 75:1 (2009), 37–67  crossref  mathscinet  isi  elib  scopus
    15. Zhang X.-D., “Algebraic Connectivity and Doubly Stochastic Tree Matrices”, Linear Alg. Appl., 430:5-6 (2009), 1656–1664  crossref  mathscinet  zmath  isi  elib  scopus
    16. Mantrach A. Yen L. Callut J. Francoisse K. Shimbo M. Saerens M., “The Sum-Over-Paths Covariance Kernel: a Novel Covariance Measure Between Nodes of a Directed Graph”, IEEE Trans. Pattern Anal. Mach. Intell., 32:6 (2010), 1112–1126  crossref  isi  elib  scopus
    17. Agaev R. Chebotarev P., “Which Digraphs with Ring Structure Are Essentially Cyclic?”, Adv. Appl. Math., 45:2 (2010), 232–251  crossref  mathscinet  zmath  isi  elib  scopus
    18. Bapat R.B., “On the First Passage Time of a Simple Random Walk on a Tree”, Stat. Probab. Lett., 81:10 (2011), 1552–1558  crossref  mathscinet  zmath  isi  scopus
    19. Chebotarev P., “The Graph Bottleneck Identity”, Adv. Appl. Math., 47:3 (2011), 403–413  crossref  mathscinet  zmath  isi  elib  scopus
    20. Freschi V., “Improved Biological Network Reconstruction Using Graph Laplacian Regularization”, J. Comput. Biol., 18:8 (2011), 987–996  crossref  mathscinet  isi  elib  scopus
    21. Lue L., Zhou T., “Link Prediction in Complex Networks: a Survey”, Physica A, 390:6 (2011), 1150–1170  crossref  adsnasa  isi  scopus
    22. Chebotarev P., “A Class of Graph-Geodetic Distances Generalizing the Shortest-Path and the Resistance Distances”, Discrete Appl. Math., 159:5 (2011), 295–302  crossref  mathscinet  zmath  isi  elib  scopus
    23. Liu K., Fang B., Zhang W., “Exploring Social Relations for Personalized Tag Recommendation in Social Tagging Systems”, IEICE Trans. Inf. Syst., E94D:3 (2011), 542–551  crossref  adsnasa  isi  elib  scopus
    24. Zhang X.-D., “Vertex Degrees and Doubly Stochastic Graph Matrices”, J. Graph Theory, 66:2 (2011), 104–114  crossref  mathscinet  zmath  isi  elib  scopus
    25. Lu L., Medo M., Yeung Ch.H., Zhang Y.-Ch., Zhang Z.-K., Zhou T., “Recommender Systems”, Phys. Rep.-Rev. Sec. Phys. Lett., 519:1 (2012), 1–49  crossref  mathscinet  isi  scopus
    26. Fouss F. Francoisse K. Yen L. Pirotte A. Saerens M., “An Experimental Investigation of Kernels on Graphs for Collaborative Recommendation and Semisupervised Classification”, Neural Netw., 31 (2012), 53–72  crossref  zmath  isi  elib  scopus
    27. Chebotarev P., “The Walk Distances in Graphs”, Discrete Appl. Math., 160:10-11 (2012), 1484–1500  crossref  mathscinet  zmath  isi  elib  scopus
    28. Maciejewski W., “Resistance and Relatedness on an Evolutionary Graph”, J. R. Soc. Interface, 9:68 (2012), 511–517  crossref  isi  elib  scopus
    29. Li Sh., Zhao Q., “Ordering Trees by the Minimal Entries of their Doubly Stochastic Graph Matrices”, Electron. J. Linear Algebra, 23 (2012), 295–305  mathscinet  zmath  adsnasa  isi  elib
    30. Г. Ш. Цициашвили, М. А. Осипова, А. С. Лосев, “Асимптотика вероятности связности графа с низконадёжными рёбрами”, ПДМ, 2013, № 1(19), 93–98  mathnet
    31. Kivimaki I., Shimbo M., Saerens M., “Developments in the Theory of Randomized Shortest Paths with a Comparison of Graph Node Distances”, Physica A, 393 (2014), 600–616  crossref  isi  elib  scopus
    32. Knill O., “Cauchy-Binet For Pseudo-Determinants”, Linear Alg. Appl., 459 (2014), 522–547  crossref  mathscinet  zmath  isi  scopus
    33. Chen B., Chen L., “a Link Prediction Algorithm Based on ANT Colony Optimization”, Appl. Intell., 41:3 (2014), 694–708  crossref  isi  scopus
    34. Heriche J.-K., Lees J.G., Morilla I., Walter T., Petrova B., Roberti M.J., Hossain M.J., Adler P., Fernandez J.M., Krallinger M., Haering Ch.H., Vilo J., Valencia A., Ranea J.A., Orengo Ch., Ellenberg J., “Integration of Biological Data By Kernels on Graph Nodes Allows Prediction of New Genes Involved in Mitotic Chromosome Condensation”, Mol. Biol. Cell, 25:16 (2014), 2522–2536  crossref  isi  elib  scopus
    35. Senelle M., Garcia-Diez S., Mantrach A., Shimbo M., Saerens M., Fouss F., “the Sum-Over-Forests Density Index: Identifying Dense Regions in a Graph”, IEEE Trans. Pattern Anal. Mach. Intell., 36:6 (2014), 1268–1274  crossref  isi  elib  scopus
    36. Pujari M., Kanawati R., “Link Prediction in Multiplex Networks”, Netw. Heterog. Media, 10:1, SI (2015), 17–35  crossref  mathscinet  zmath  isi  scopus
    37. He Yu.-l., Liu J.N.K., Hu Ya.-x., Wang X.-zh., “Owa Operator Based Link Prediction Ensemble For Social Network”, Expert Syst. Appl., 42:1 (2015), 21–50  crossref  isi  scopus
    38. Nikolakopoulos A.N., Kouneli M.A., Garofalakis J.D., “Hierarchical Itemspace Rank: Exploiting Hierarchy To Alleviate Sparsity in Ranking-Based Recommendation”, Neurocomputing, 163:SI (2015), 126–136  crossref  isi  scopus
    39. Li H.-H. Su L., “Further Results on Digraphs With Completely Real Laplacian Spectra”, Appl. Math. Comput., 265 (2015), 630–634  crossref  mathscinet  isi  elib  scopus
    40. Zhao Yu., Li Sh., Zhao Ch., Jiang W., “Link Prediction Via a Neighborhood-Based Nonnegative Matrix Factorization Model”, Proceedings of the Third International Conference on Communications, Signal Processing, and Systems, Lecture Notes in Electrical Engineering, 322, eds. Mu J., Liang Q., Wang W., Zhang B., Pi Y., Springer, 2015, 603–611  crossref  isi  scopus
    41. Zhao Yu., Li Sh., Hou J., “Link Quality Prediction Via a Neighborhood-Based Nonnegative Matrix Factorization Model For Wireless Sensor Networks”, Int. J. Distrib. Sens. Netw., 2015, 828493  crossref  isi  elib  scopus
    42. Kivimaki I., Lebichot B., Saramaki J., Saerens M., “Two Betweenness Centrality Measures Based on Randomized Shortest Paths”, Sci Rep, 6 (2016), 19668  crossref  isi  scopus
    43. В. В. Мазалов, А. А. Печников, Л. И. Трухина, Б. Т. Цынгуев, “Ранжирование академического веб-пространства”, УБС, 61 (2016), 118–135  mathnet  elib
    44. Cui W., Pu C., Xu Zh., Cai Sh., Yang J., Michaelson A., “Bounded Link Prediction in Very Large Networks”, Physica A, 457 (2016), 202–214  crossref  isi  scopus
    45. De A., Bhattacharya S., Sarkar S., Ganguly N., Chakrabarti S., “Discriminative Link Prediction Using Local, Community, and Global Signals”, IEEE Trans. Knowl. Data Eng., 28:8 (2016), 2057–2070  crossref  isi  scopus
    46. Wu Zh., Lin Y., Wang J., Gregory S., “Link Prediction With Node Clustering Coefficient”, Physica A, 452 (2016), 1–8  crossref  isi  scopus
    47. Wu Zh., Lin Y., Wan H., Jamil W., “Predicting TOP- l Missing Links With Node and Link Clustering Information in Large-Scale Networks”, J. Stat. Mech.-Theory Exp., 2016, 083202  crossref  isi  scopus
    48. Avrachenkov K., Borkar V.S., Saboo K., “Distributed and Asynchronous Methods For Semi-Supervised Learning”, Algorithms and Models For the Web Graph, Waw 2016, Lecture Notes in Computer Science, 10088, eds. Bonato A., Graham F., Pralat P., Springer Int Publishing Ag, 2016, 34–46  crossref  mathscinet  isi  scopus
    49. Р. П. Агаев, П. Ю. Чеботарев, “Модели латентного консенсуса”, Автомат. и телемех., 2017, № 1, 106–120  mathnet  mathscinet  elib; R. P. Agaev, P. Yu. Chebotarev, “Models of latent consensus”, Autom. Remote Control, 78:1 (2017), 88–99  crossref  isi
    50. Avrachenkov K. Chebotarev P. Mishenin A., “Semi-Supervised Learning With Regularized Laplacian”, Optim. Method Softw., 32:2 (2017), 222–236  crossref  mathscinet  zmath  isi  scopus
    51. Luo Peng, Wu Chong, Li Yongli, “Link Prediction Measures Considering Different Neighbors' Effects and Application in Social Networks”, Int. J. Mod. Phys. C, 28:3 (2017)  crossref  mathscinet  isi  scopus
    52. Pei P., Liu B., Jiao L., “Link Prediction in Complex Networks Based on An Information Allocation Index”, Physica A, 470 (2017), 1–11  crossref  isi  scopus
    53. Csato L., “Measuring Centrality By a Generalization of Degree”, Cent. Europ. J. Oper. Res., 25:4, SI (2017), 771–790  crossref  mathscinet  zmath  isi  scopus
    54. Zhu B., Bai B., Chen W., Liu Zh., “Sparse Network Completion Via Discrete-Constrained Nuclear-Norm Minimization”, IEEE Signal Process. Lett., 24:12 (2017), 1896–1900  crossref  mathscinet  isi  scopus
    55. Liu Sh., Ji X., Liu C., Bai Y., “Extended Resource Allocation Index For Link Prediction of Complex Network”, Physica A, 479 (2017), 174–183  crossref  mathscinet  isi  scopus
    56. Francoisse K. Kivimaki I. Mantrach A. Rossi F. Saerens M., “A Bag-of-Paths Framework For Network Data Analysis”, Neural Netw., 90 (2017), 90–111  crossref  isi  scopus
    57. Avrachenkov K. Chebotarev P. Rubanov D., “Kernels on Graphs as Proximity Measures”, Algorithms and Models For the Web Graph, Waw 2017, Lecture Notes in Computer Science, 10519, ed. Bonato A. Graham F. Pralat P., Springer International Publishing Ag, 2017, 27–41  crossref  mathscinet  isi  scopus
    58. Wu Zh., Lin Y., Zhao Y., Yan H., “Improving Local Clustering Based TOP-l Link Prediction Methods Via Asymmetric Link Clustering Information”, Physica A, 492 (2018), 1859–1874  crossref  isi  scopus
    59. Zampieri G., Dinh Van Tran, Donini M., Navarin N., Aiolli F., Sperduti A., Valle G., “Scuba: Scalable Kernel-Based Gene Prioritization”, BMC Bioinformatics, 19 (2018), 23  crossref  isi  scopus
    60. Dinh Tran Van, Sperduti A., Costa F., “The Conjunctive Disjunctive Graph Node Kernel For Disease Gene Prioritization”, Neurocomputing, 298 (2018), 90–99  crossref  isi  scopus
    61. Zhang P., Qiu D., Zeng A., Xiao J., “A Comprehensive Comparison of Network Similarities For Link Prediction and Spurious Link Elimination”, Physica A, 500 (2018), 97–105  crossref  mathscinet  isi  scopus
    62. De J. Zhang X. Lin F. Cheng L., “Transduction on Directed Graphs Via Absorbing Random Walks”, IEEE Trans. Pattern Anal. Mach. Intell., 40:7 (2018), 1770–1784  crossref  isi  scopus
    63. Brodhead K., “Link Prediction Schemes Contra Weisfeiler-Leman Models”, Int. J. Adv. Comput. Sci. Appl., 9:6 (2018), 16–24  isi
    64. Xu H.-Yu. Luo Yu.-P. Wu J.-W. Huang M.-Ch., “Hierarchical Centralities of Information Transmissions in Reaching a Consensus”, Phys. Lett. A, 383:5 (2019), 432–439  crossref  mathscinet  isi  scopus
    65. Nikolakopoulos A.N., Kalantzis V., Gallopoulos E., Garofalakis J.D., “Eigenrec: Generalizing Puresvd For Effective and Efficient TOP-N Recommendations”, Knowl. Inf. Syst., 58:1 (2019), 59–81  crossref  isi  scopus
    66. Avrachenkov K. Chebotarev P. Rubanov D., “Similarities on Graphs: Kernels Versus Proximity Measures”, Eur. J. Comb., 80 (2019), 47–56  crossref  isi
    67. Wu J., Shen J., Zhou B., Zhang X., Huang B., “General Link Prediction With Influential Node Identification”, Physica A, 523 (2019), 996–1007  crossref  isi
    68. Chen X., Fang L., Yang T., Yang J., Bao Z., Wu D., Zhao J., “The Application of Degree Related Clustering Coefficient in Estimating the Link Predictability and Predicting Missing Links of Networks”, Chaos, 29:5 (2019), 053135  crossref  isi
    69. Е.И. Деза, “Конусы и многогранники обобщенных метрик”, Чебышевский сб., 20:2 (2019), 140–155  mathnet  crossref
  • Автоматика и телемеханика
    Просмотров:
    Эта страница:454
    Полный текст:178
    Первая стр.:2
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020