General information
Latest issue
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Avtomat. i Telemekh.:

Personal entry:
Save password
Forgotten password?

Avtomat. i Telemekh., 2008, Issue 1, Pages 45–54 (Mi at589)  

This article is cited in 9 scientific papers (total in 9 papers)

Deterministic Systems

Hybrid control systems and the dynamic traveling salesman problem

S. I. Sergeev

Moscow State University of Economics, Statistics and Informatics

Abstract: A new approximate algorithm for solving the dynamic traveling salesman problem (DTSP) is proposed; the traveling salesman starting from the base city visits megapoleis and cities inside megapoleis and comes back to the base city. A specific feature of this variant of DTSP is the movement of cities inside megapoleis in time. To solve this problem, a general solution theory for hybrid (complicated) systems with “combinatorial” and “continuous” path segments is developed. The general theory is based on the sufficient optimality conditions known in the theory of optimal control.

Full text: PDF file (210 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2008, 69:1, 42–51

Bibliographic databases:

Document Type: Article
PACS: 02.30.Yy, 07.05.Dz
Presented by the member of Editorial Board: B. T. Polyak

Received: 25.09.2006

Citation: S. I. Sergeev, “Hybrid control systems and the dynamic traveling salesman problem”, Avtomat. i Telemekh., 2008, no. 1, 45–54; Autom. Remote Control, 69:1 (2008), 42–51

Citation in format AMSBIB
\by S.~I.~Sergeev
\paper Hybrid control systems and the dynamic traveling salesman problem
\jour Avtomat. i Telemekh.
\yr 2008
\issue 1
\pages 45--54
\jour Autom. Remote Control
\yr 2008
\vol 69
\issue 1
\pages 42--51

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Chentsov A.G., “Constrained optimal routing”, Doklady Mathematics, 78:3 (2008), 859–863  crossref  mathscinet  zmath  isi  elib
    2. A. A. Chentsov, A. G. Chentsov, P. A. Chentsov, “Iteration method in the routing problem with internal losses”, Proc. Steklov Inst. Math. (Suppl.), 269, suppl. 1 (2010), S48–S68  mathnet  crossref  elib
    3. A. A. Chentsov, A. G. Chentsov, P. A. Chentsov, “An extremal constrained routing problem with internal losses”, Russian Math. (Iz. VUZ), 54:6 (2010), 54–68  mathnet  crossref  mathscinet
    4. A. N. Sesekin, A. A. Chentsov, A. G. Chentsov, “Marshrutizatsiya s abstraktnoi funktsiei agregirovaniya stoimostei peremeschenii”, Tr. IMM UrO RAN, 16, no. 3, 2010, 240–264  mathnet  elib
    5. Chentsov A.G., “Dynamic programming method in extremal constrained routing problems”, J. Comput. Syst. Sci. Int., 49:3 (2010), 392–405  crossref  mathscinet  zmath  isi  elib
    6. Sesekin A.N., Chentsov A.A., Chentsov A.G., “A generalized courier problem with the cost function depending on the list of tasks”, J. Comput. Syst. Sci. Int., 49:2 (2010), 234–243  crossref  mathscinet  zmath  isi  elib
    7. A. M. Grigorev, E. E. Ivanko, A. G. Chentsov, “Dinamicheskoe programmirovanie v obobschennoi zadache kurera s vnutrennimi rabotami: elementy parallelnoi struktury”, Model. i analiz inform. sistem, 18:3 (2011), 101–124  mathnet
    8. A. G. Chentsov, “On a parallel procedure for constructing the Bellman function in the generalized problem of courier with internal jobs”, Autom. Remote Control, 73:3 (2012), 532–546  mathnet  crossref  isi
    9. Salii Ya., “Revisiting Dynamic Programming For Precedence-Constrained Traveling Salesman Problem and Its Time-Dependent Generalization”, Eur. J. Oper. Res., 272:1 (2019), 32–42  crossref  mathscinet  zmath  isi  scopus
  • Avtomatika i Telemekhanika
    Number of views:
    This page:339
    Full text:141
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019