|
Avtomat. i Telemekh., 2013, Issue 12, Pages 56–103
(Mi at6171)
|
|
|
|
This article is cited in 18 scientific papers (total in 18 papers)
Topical issue
Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations
B. M. Millerab, E. Ya. Rubinovichc a Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
b School of Mathematical Sciences, Monash University, Victoria, Australia
c Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
Abstract:
Consideration was given to the problems of variational calculus and optimal control admitting impulsive controls and, correspondingly, discontinuous solutions. The evolution of the notion of singular space-time transformation beginning from the problem of classical variational calculus and ending with the problems of optimal control at the phase of impact was shown.
Full text:
PDF file (931 kB)
References:
PDF file
HTML file
English version:
Automation and Remote Control, 2013, 74:12, 1969–2006
Bibliographic databases:
Presented by the member of Editorial Board: Â. È. Ãóðìàí
Received: 04.02.2013
Citation:
B. M. Miller, E. Ya. Rubinovich, “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Avtomat. i Telemekh., 2013, no. 12, 56–103; Autom. Remote Control, 74:12 (2013), 1969–2006
Citation in format AMSBIB
\Bibitem{MilRub13}
\by B.~M.~Miller, E.~Ya.~Rubinovich
\paper Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations
\jour Avtomat. i Telemekh.
\yr 2013
\issue 12
\pages 56--103
\mathnet{http://mi.mathnet.ru/at6171}
\transl
\jour Autom. Remote Control
\yr 2013
\vol 74
\issue 12
\pages 1969--2006
\crossref{https://doi.org/10.1134/S0005117913120047}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000328621300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891548996}
Linking options:
http://mi.mathnet.ru/eng/at6171 http://mi.mathnet.ru/eng/at/y2013/i12/p56
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. A. Galyaev, “On the mathematical model of one-dimensional impact of a chain of viscoelastic bodies”, Autom. Remote Control, 76:10 (2015), 1743–1750
-
A. N. Sesekin, N. I. Zhelonkina, “Stability of nonlinear dynamical systems containing the product of discontinuous functions and distributions”, Applications of Mathematics in Engineering and Economics (AMEE'16), AIP Conf. Proc., 1789, eds. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Phys., 2016, UNSP 040011
-
A. N. Sesekin, I. Yu. Andreeva, A. S. Shlyakhov, “Singular linear quadratic control problem for systems with linear and constant delay”, Applications of Mathematics in Engineering and Economics (AMEE'16), AIP Conf. Proc., 1789, ed. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Phys., 2016, UNSP 040010
-
B. M. Miller, E. Ya. Rubinovich, “Dinamicheskie sistemy s razryvnymi resheniyami i zadachi s neogranichennymi proizvodnymi”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 136–149
-
O. N. Samsonyuk, M. V. Staritsyn, “Impulsnye upravlyaemye sistemy s traektoriyami ogranichennoi $p$-variatsii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 19 (2017), 164–177
-
T. K. Yuldashev, “Nelineinoe optimalnoe upravlenie v obratnoi zadache dlya odnoi sistemy s parabolicheskim uravneniem”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2017, no. 2, 59–78
-
A. A. Galyaev, P. V. Lysenko, “Zadacha optimalnogo bystrodeistviya pri uprugom i vyazkouprugom vzaimodeistviyakh tela s poverkhnostyu”, Probl. upravl., 4 (2018), 14–20
-
V. A. Dykhta, O. N. Samsonyuk, “Pozitsionnyi printsip minimuma dlya impulsnykh protsessov”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 25 (2018), 46–62
-
M. Motta, “Minimum time problem with impulsive and ordinary controls”, Discret. Contin. Dyn. Syst., 38:11 (2018), 5781–5809
-
O. N. Samsonyuk, S. A. Timoshin, “Bv solutions of rate independent processes driven by impulsive controls”, IFAC-PapersOnLine, 51:32 (2018), 361–366
-
V. A. Dykhta, O. N. Samsonyuk, “Optimality conditions with feedback controls for optimal impulsive control problems”, IFAC-PapersOnLine, 51:32 (2018), 509–514
-
O. N. Samsonyuk, M. V. Staritsyn, “Rough paths theory and impulsive control: a promising connection”, IFAC-PapersOnLine, 51:32 (2018), 615–618
-
Goncharova E., Staritsyn M., “On Connection Between Two Conventional Types of Impulsive Control Systems in Respect of Sensitivity and Relaxation”, 2018 European Control Conference (Ecc), IEEE, 2018, 460–465
-
N. I. Zhelonkina, A. N. Sesekin, “Ob ustoichivosti reshenii nelineinykh sistem s impulsnoi strukturoi”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:124 (2018), 624–636
-
Samsonyuk O.N., Timoshin S.A., “Optimal Control Problems With States of Bounded Variation and Hysteresis”, J. Glob. Optim., 74:3 (2019), 565–596
-
B. M. Miller, E. Ya. Rubinovich, “Numerical analysis of shock interactions with the example of Painleve paradox with a “slanted” fall of a rod”, Autom. Remote Control, 80:10 (2019), 1835–1846
-
T. K. Yuldashev, “Ob odnom optimalnom upravlenii obratnymi teplovymi protsessami s integralnym usloviem pereopredeleniya”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2019, no. 4, 65–87
-
A. N. Sesekin, N. I. Zhelonkina, “On the stability of tubes of discontinuous solutions of bilinear systems with delay”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 31 (2020), 96–110
|
Number of views: |
This page: | 447 | Full text: | 83 | References: | 59 | First page: | 30 |
|