RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomat. i Telemekh., 1989, Issue 9, Pages 34–43 (Mi at6415)  

This article is cited in 8 scientific papers (total in 8 papers)

Deterministic Systems

On stabilization of some control systems with an after-effect

I. M. Anan'evskii, V. B. Kolmanovskii

Moscow

Abstract: Stabilizability is established of solid state body systems by using PID-controllers. The system can be moved from a specifiea initial position to a specified final position. Numerical cases are discussed of paths of a two-element manipulator for various controllers.

Full text: PDF file (912 kB)

English version:
Automation and Remote Control, 1989:9, 1174–1181

Bibliographic databases:
UDC: 62-501.52

Received: 07.01.1988

Citation: I. M. Anan'evskii, V. B. Kolmanovskii, “On stabilization of some control systems with an after-effect”, Avtomat. i Telemekh., 1989, no. 9, 34–43; Autom. Remote Control, 1989, no. 9, 1174–1181

Citation in format AMSBIB
\Bibitem{AnaKol89}
\by I.~M.~Anan'evskii, V.~B.~Kolmanovskii
\paper On stabilization of some control systems with an after-effect
\jour Avtomat. i Telemekh.
\yr 1989
\issue 9
\pages 34--43
\mathnet{http://mi.mathnet.ru/at6415}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1026521}
\zmath{https://zbmath.org/?q=an:0716.93048}
\transl
\jour Autom. Remote Control
\yr 1989
\issue 9
\pages 1174--1181


Linking options:
  • http://mi.mathnet.ru/eng/at6415
  • http://mi.mathnet.ru/eng/at/y1989/i9/p34

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Pavlikov, “On stabilization of the controlled mechanical systems”, Autom. Remote Control, 68:9 (2007), 1482–1491  mathnet  crossref  mathscinet  zmath
    2. A. S. Andreev, “The Lyapunov functionals method in stability problems for functional differential equations”, Autom. Remote Control, 70:9 (2009), 1438–1486  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    3. A. S. Andreev, O. A. Peregudova, S. Yu. Rakov, “Uravneniya Volterra v modelirovanii nelineinogo integralnogo regulyatora”, Zhurnal SVMO, 18:3 (2016), 8–18  mathnet  elib
    4. Andreev A.S., Peregudova O.A., “Stabilization of the Preset Motions of a Holonomic Mechanical System Without Velocity Measurement”, Pmm-J. Appl. Math. Mech., 81:2 (2017), 95–105  crossref  isi
    5. Andreev A.S., Bezglasnyi S.P., Peregudova O.A., “On Stabilization of Stationary Program Motions of a Controlled Mechanical System”, World Congress on Engineering and Computer Science, Wcecs 2017, Vol II, Lecture Notes in Engineering and Computer Science, Int Assoc Engineers-Iaeng, 2017, 777–781  isi
    6. A. S. Andreev, O. A. Peregudova, “On the Stability and Stabilization Problems of Volterra Integro-Differential Equations”, Nelineinaya dinam., 14:3 (2018), 387–407  mathnet  crossref  elib
    7. Andreev A.S. Peregudova O.A., “Nonlinear Regulators in the Position Stabilization Problem of the Holonomic Mechanical System”, Mech. Sol., 53:1 (2018), 22–38  crossref  isi  scopus
    8. Andreev A., Peregudova O., “Non-Linear Pi Regulators in Control Problems For Holonomic Mechanical Systems”, Syst. Sci. Control Eng., 6:1 (2018), 12–19  crossref  isi  scopus
  • Avtomatika i Telemekhanika
    Number of views:
    This page:130
    Full text:52
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020