RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomat. i Telemekh., 2010, Issue 4, Pages 150–168 (Mi at808)  

This article is cited in 4 scientific papers (total in 4 papers)

Simulation of Behavior and Intelligence

The symmetric travelling salesman problem II. New low bounds

S. I. Sergeev

Moscow State University of Economics, Statistics and Informatics

Abstract: The branch-and-bound method is adduced for the symmetric salesman problem where two lower bounds are proposed as bounds. The first bound is a solution to the problem of optimal $2$-matching; the second one, to the problem of minimum spanning $1$-tree. The last bound is enhanced by applying the problem of optimal $2$-matching. Both these bounds considerably improve the symmetric traveling salesman problem as compared to the asymmetric problem.

Full text: PDF file (293 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2010, 71:4, 681–696

Bibliographic databases:

Presented by the member of Editorial Board: А. А. Лазарев

Received: 08.12.2008

Citation: S. I. Sergeev, “The symmetric travelling salesman problem II. New low bounds”, Avtomat. i Telemekh., 2010, no. 4, 150–168; Autom. Remote Control, 71:4 (2010), 681–696

Citation in format AMSBIB
\Bibitem{Ser10}
\by S.~I.~Sergeev
\paper The symmetric travelling salesman problem~II. New low bounds
\jour Avtomat. i Telemekh.
\yr 2010
\issue 4
\pages 150--168
\mathnet{http://mi.mathnet.ru/at808}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2682144}
\zmath{https://zbmath.org/?q=an:1206.90154}
\transl
\jour Autom. Remote Control
\yr 2010
\vol 71
\issue 4
\pages 681--696
\crossref{https://doi.org/10.1134/S0005117910040090}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000276758000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77951735982}


Linking options:
  • http://mi.mathnet.ru/eng/at808
  • http://mi.mathnet.ru/eng/at/y2010/i4/p150

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. S. I. Sergeev, “Nonlinear resolving functions for the travelling salesman problem”, Autom. Remote Control, 74:6 (2013), 978–994  mathnet  crossref  mathscinet  isi
    2. S. I. Sergeev, “Maximum travelling salesman problem. I”, Autom. Remote Control, 75:12 (2014), 2170–2189  mathnet  crossref  isi
    3. Matsiy O.B., Morozov A.V., Panishev A.V., “Fast Algorithm To Find 2-Factor of Minimum Weight”, Cybern. Syst. Anal., 52:3 (2016), 467–474  crossref  mathscinet  zmath  isi  elib  scopus
    4. V. A. Goloveshkin, G. N. Zhukova, M. V. Ulyanov, M. I. Fomichev, “Probabilistic prediction of the complexity of traveling salesman problems based on approximating the complexity distribution from experimental data”, Autom. Remote Control, 79:7 (2018), 1296–1310  mathnet  crossref  isi  elib
  • Avtomatika i Telemekhanika
    Number of views:
    This page:527
    Full text:145
    References:30
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020