RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomat. i Telemekh., 2007, Issue 3, Pages 106–125 (Mi at956)  

This article is cited in 78 scientific papers (total in 78 papers)

Adaptive and Robust Systems

Rejection of bounded exogenous disturbances by the method of invariant ellipsoids

S. A. Nazin, B. T. Polyak, M. V. Topunov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia

Abstract: Rejection of the bounded exogenous disturbances was first studied by the $l_1$-optimization theory. A new approach to this problem was proposed in the present paper on the basis of the method of invariant ellipsoids where the technique of linear matrix inequalities was the main tool. Consideration was given to the continuous and discrete variants of the problem. Control of the “double pendulum” was studied by way of example.

Full text: PDF file (511 kB)
References: PDF file   HTML file

English version:
Automation and Remote Control, 2007, 68:3, 467–486

Bibliographic databases:

PACS: 02.30.Yy
Presented by the member of Editorial Board: . . 

Received: 12.09.2006

Citation: S. A. Nazin, B. T. Polyak, M. V. Topunov, “Rejection of bounded exogenous disturbances by the method of invariant ellipsoids”, Avtomat. i Telemekh., 2007, no. 3, 106–125; Autom. Remote Control, 68:3 (2007), 467–486

Citation in format AMSBIB
\Bibitem{NazPolTop07}
\by S.~A.~Nazin, B.~T.~Polyak, M.~V.~Topunov
\paper Rejection of bounded exogenous disturbances by the method of invariant ellipsoids
\jour Avtomat. i Telemekh.
\yr 2007
\issue 3
\pages 106--125
\mathnet{http://mi.mathnet.ru/at956}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2304813}
\zmath{https://zbmath.org/?q=an:1125.93370}
\transl
\jour Autom. Remote Control
\yr 2007
\vol 68
\issue 3
\pages 467--486
\crossref{https://doi.org/10.1134/S0005117907030083}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947594498}


Linking options:
  • http://mi.mathnet.ru/eng/at956
  • http://mi.mathnet.ru/eng/at/y2007/i3/p106

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. T. Polyak, M. V. Topunov, “Suppression of bounded exogenous disturbances: Output feedback”, Autom. Remote Control, 69:5 (2008), 801–818  mathnet  crossref  mathscinet  zmath  isi
    2. L. B. Rapoport, Yu. V. Morozov, “Estimating the attraction domain of the invariant set in the problem of wheeled robot control”, Autom. Remote Control, 69:11 (2008), 1859–1872  mathnet  crossref  mathscinet  zmath  isi
    3. Polyak B.T., Topunov M.V., “Filtering under nonrandom disturbances: The method of invariant ellipsoids”, Doklady Mathematics, 77:1 (2008), 158–162  crossref  mathscinet  zmath  isi  elib
    4. Gonzalez-Garcia S., Polyakov A., Poznyak A., “Robust Stabilization of a Spacecraft with Flexible Elements using Invariant Ellipsoid Technique”, 2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008), 2008, 364–368  isi
    5. B. T. Polyak, “Razvitie teorii avtomaticheskogo upravleniya”, Probl. upravl., 2009, no. 3.1, 13–18  mathnet
    6. A. A. Dorofeyuk, “Metodologiya ekspertno-klassifikatsionnogo analiza v zadachakh upravleniya i obrabotki slozhnoorganizovannykh dannykh (istoriya i perspektivy razvitiya)”, Probl. upravl., 2009, no. 3.1, 19–28  mathnet
    7. M. V. Khlebnikov, “Robust filtering under nonrandom disturbances: The invariant ellipsoid approach”, Autom. Remote Control, 70:1 (2009), 133–146  mathnet  crossref  mathscinet  zmath  isi
    8. A. M. Tsykunov, “Robust control of multidimensional nonstationary linear plants”, Autom. Remote Control, 70:2 (2009), 271–282  mathnet  crossref  mathscinet  zmath  isi
    9. Kuntsevich V.M., Polyak B.T., “Invariant Sets of Nonlinear Discrete Systems with Bounded Disturbances and Control Problems”, Journal of Automation and Information Sciences, 41:11 (2009), 1–16  crossref  mathscinet  isi  scopus
    10. Davila J., Poznyak A., “Sliding Modes Parameter adjustment in the presence of fast actuators using invariant ellipsoids method”, 2009 6th International Conference on Electrical Engineering, Computing Science and Automation Control (CCE 2009), 2009, 18–23  isi
    11. Alazki H., Poznyak A., “Output Linear Feedback Tracking for Discrete-Time Stochastic Model Using Robust Attractive Ellipsoid Method with LMI Application”, 2009 6th International Conference on Electrical Engineering, Computing Science and Automation Control (CCE 2009), 2009, 43–48  isi
    12. Polyakov A., Poznyak A., “Minimization of the Unmatched Disturbances in the Sliding Mode Control Systems via Invariant Ellipsoid Method”, 2009 IEEE Control Applications CCA & Intelligent Control (ISIC), IEEE International Conference on Control Applications, 2009, 1122–1127  isi
    13. Gonzalez-Garcia S., Polyakov A., Poznyak A., “Linear Feedback Spacecraft Stabilization Using the Method of Invariant Ellipsoids”, SSST: 2009 41st Southeastern Symposium on System Theory, Southeastern Symposium on System Theory, 2009, 195–198  adsnasa  isi
    14. M. V. Khlebnikov, “A nonfragile controller for suppressing exogenous disturbances”, Autom. Remote Control, 71:4 (2010), 640–653  mathnet  crossref  mathscinet  zmath  isi
    15. A. M. Tsykunov, “Decentralized robust control for multiconnected objects with structural uncertainty”, Autom. Remote Control, 71:12 (2010), 2595–2604  mathnet  crossref  mathscinet  zmath  isi
    16. Feron E., “From control systems to control software: integrating Lyapunov-theoretic proofs within code”, IEEE Control Syst. Mag., 30:6 (2010), 50–71  crossref  mathscinet  isi  elib  scopus
    17. Bukov V., Bronnikov A., Selvesyuk N., “Decentralized coordinated control for a group of aircraft”, Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 224:G6 (2010), 647–655  crossref  isi  scopus
    18. Davila J., Poznyak A., “Design of Sliding Mode Controllers with Actuators using Attracting Ellipsoid Method”, 49th IEEE Conference on Decision and Control (CDC), 2010, 72–77  crossref  isi  scopus
    19. A. M. Tsykunov, “Suboptimalnoe detsentralizovannoe robastnoe upravlenie lineinym ob'ektom”, Vestn. Astrakhan. gos. tekhn. un-ta. Ser. upravlenie, vychisl. tekhn. inform., 2010, no. 1, 78–88  mathnet
    20. D. E. Grebenschikov, A. I. Parsheva, A. M. Tsykunov, “Algoritm robastnogo upravleniya dlya odnogo klassa neminimalno-fazovykh ob'ektov”, Vestn. Astrakhan. gos. tekhn. un-ta. Ser. upravlenie, vychisl. tekhn. inform., 2010, no. 1, 89–94  mathnet
    21. D. V. Balandin, M. M. Kogan, “Synthesis of a suboptimal controller by output for dampening limited disturbances”, Autom. Remote Control, 72:4 (2011), 677–683  mathnet  crossref  mathscinet  zmath  isi
    22. M. V. Khlebnikov, “Suppression of bounded exogenous disturbances: A linear dynamic output controller”, Autom. Remote Control, 72:4 (2011), 699–712  mathnet  crossref  mathscinet  zmath  isi
    23. S. Gonzalez-Garcia, A. E. Polyakov, A. S. Poznyak, “Using the method of invariant ellipsoids for linear robust output stabilization of spacecraft”, Autom. Remote Control, 72:3 (2011), 540–555  mathnet  crossref  mathscinet  zmath  isi
    24. Polyakov A., Poznyak A., “Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control”, Automatica, 47:7 (2011), 1450–1454  crossref  mathscinet  zmath  isi  elib  scopus
    25. Davila J., Poznyak A., “Dynamic sliding mode control design using attracting ellipsoid method”, Automatica, 47:7 (2011), 1467–1472  crossref  mathscinet  zmath  isi  elib  scopus
    26. Davila J., Poznyak A., “Sliding mode parameter adjustment for perturbed linear systems with actuators via invariant ellipsoid method”, Internat J Robust Nonlinear Control, 21:5 (2011), 473–487  crossref  mathscinet  zmath  isi  elib  scopus
    27. M. V. Khlebnikov, B. T. Polyak, V. M. Kuntsevich, “Optimization of linear systems subject to bounded exogenous disturbances: The invariant ellipsoid technique”, Autom. Remote Control, 72:11 (2011), 2227–2275  mathnet  crossref  mathscinet  isi
    28. Selvesyuk N.I., Titov A.A., “Analiticheskii sintez regulyatorov zadannoi tochnosti dlya podavleniya ogranichennykh v l_{inf}-norme vneshnikh vozmuschenii”, Mekhatronika, avtomatizatsiya, upravlenie, 2011, no. 10, 2–7  elib
    29. Alazki H., Poznyak A., “Averaged Attractive Ellipsoid Technique Applied to Inventory Projectional Control with Uncertain Stochastic Demands”, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), IEEE, 2011, 2082–2087  crossref  isi
    30. Nguyen H.-N., Olaru S., Gutman P.-O., Hovd M., “Constrained Interpolation-Based Control for Polytopic Uncertain Systems”, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-Ecc), IEEE, 2011, 4961–4966  crossref  isi
    31. A. V. Kuntsevich, V. M. Kuntsevich, “Invariant sets for families of linear and nonlinear discrete systems with bounded disturbances”, Autom. Remote Control, 73:1 (2012), 83–96  mathnet  crossref  isi
    32. L. N. Krivdina, “Designing suboptimal discrete output control laws for damping bounded perturbations”, Autom. Remote Control, 73:5 (2012), 769–777  mathnet  crossref  zmath  isi
    33. M. V. Khlebnikov, “Settling time in a linear dynamic system with bounded external disturbances”, Autom. Remote Control, 73:6 (2012), 937–948  mathnet  crossref  isi
    34. Selvesyuk N.I., “Obobschennyi podkhod k sintezu tochnogo upravleniya dlya mnogosvyaznykh sistem s ispolzovaniem mnozhestv dostizhimosti”, Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 128:3 (2012), 160–167  elib
    35. V. Yu. Tertychnyi-Dauri, “Designing adaptive control in the problem of optimal damping of perturbations”, Autom. Remote Control, 73:9 (2012), 1511–1528  mathnet  crossref  zmath  isi
    36. Alazki H.S., Gorbatch A.P., “Inventory Constraint Control with Uncertain Stochastic Demands: Attractive Ellipsoid Technique Application”, IMA J. Math. Control Inf., 29:3 (2012), 399–425  crossref  mathscinet  zmath  isi  elib  scopus
    37. Polyakov A., “Minimization of Disturbances Effects in Time Delay Predictor-Based Sliding Mode Control Systems”, J. Frankl. Inst.-Eng. Appl. Math., 349:4, SI (2012), 1380–1396  crossref  mathscinet  zmath  isi  scopus
    38. Alazki H., Poznyak A., “Robust Stochastic Tracking for Discrete-Time Models: Designing of Ellipsoid Where Random Trajectories Converge with Probability One”, Int. J. Syst. Sci., 43:8 (2012), 1519–1533  crossref  mathscinet  zmath  isi  elib  scopus
    39. A. M. Tsykunov, “Kompensatsiya vozmuschenii i pomekh v sistemakh s izmeryaemym vektorom sostoyaniya”, Vestn. Astrakhan. gos. tekhn. un-ta. Ser. upravlenie, vychisl. tekhn. inform., 2012, no. 2, 67–76  mathnet
    40. Gaiduk A.R., Plaksienko E.A., “Upravlenie nelineinymi ob'ektami s kompensatsiei neopredelennogo vozmuscheniya”, Mekhatronika, avtomatizatsiya, upravlenie, 2013, no. 1, 2–8  elib
    41. A. A. Mamaev, K. V. Siemenikhin, “Minimax estimation methods under ellipsoidal constraints”, Autom. Remote Control, 74:4 (2013), 642–659  mathnet  crossref  isi
    42. A. M. Tsykunov, “Robust control for object with the distributed time delay”, Autom. Remote Control, 76:4 (2015), 721–731  mathnet  crossref  isi
    43. A. R. Gaiduk, “Design of nonlinear selectively invariant systems based on the controllable Jordan form”, Autom. Remote Control, 74:7 (2013), 1061–1071  mathnet  crossref  isi
    44. Ordaz P. Alazki H. Poznyak A., “A Sample-Time Adjusted Feedback for Robust Bounded Output Stabilization”, Kybernetika, 49:6 (2013), 911–934  mathscinet  zmath  isi  elib
    45. Saldivar B. Mondie S., “Drilling Vibration Reduction via Attractive Ellipsoid Method”, J. Frankl. Inst.-Eng. Appl. Math., 350:3 (2013), 485–502  crossref  mathscinet  zmath  isi  scopus
    46. A. M. Tsykunov, “Robastnaya sistema slezheniya s kompensatsiei vozmuschenii i pomekh”, Vestn. Astrakhan. gos. tekhn. un-ta. Ser. upravlenie, vychisl. tekhn. inform., 2014, no. 1, 54–61  mathnet
    47. Tsykunov A.M., “Robust Control With Compensation of Bounded Perturbations and Noise”, J. Comput. Syst. Sci. Int., 53:3 (2014), 320–326  crossref  mathscinet  zmath  isi  elib  scopus
    48. Kim K.-K.K., Hovakimyan N., “Multi-Criteria Optimization For Filter Design of l1 Adaptive Control”, J. Optim. Theory Appl., 161:2 (2014), 557–581  crossref  mathscinet  zmath  isi  scopus
    49. Khlebnikov M.V. Shcherbakov P.S., “Nonfragile Controllers For Rejection of Exogenous Disturbances”, 2014 European Control Conference (Ecc), IEEE, 2014, 1927–1932  crossref  isi  scopus
    50. Tan Ch.K. Wang J., “Ship Deck Landing of a Quadrotor Using the Invariant Ellipsoid Technique”, 2014 Proceedings of the Sice Annual Conference (Sice), Proceedings of the Sice Annual Conference, IEEE, 2014, 1443–1448  crossref  isi  scopus
    51. Nguyen H.-N., Olaru S., Gutman P.-O., Hovd M., “Constrained Control of Uncertain, Time-Varying Linear Discrete-Time Systems Subject To Bounded Disturbances”, IEEE Trans. Autom. Control, 60:3 (2015), 831–836  crossref  mathscinet  zmath  isi  elib  scopus
    52. M. V. Khlebnikov, P. S. Shcherbakov, “Invariance and nonfragility in the rejection of exogenous disturbances”, Autom. Remote Control, 76:5 (2015), 872–884  mathnet  crossref  isi  elib  elib
    53. A. M. Tsykunov, “Sistema slezheniya dlya ob'ekta s raspredelennym zapazdyvaniem v usloviyakh vozmuschenii i pomekh”, Probl. upravl., 5 (2015), 20–26  mathnet
    54. Ordaz P., Poznyak (Fima) Alex, “‘Kl’-Gain Adaptation For Attractive Ellipsoid Method”, IMA J. Math. Control Inf., 32:3 (2015), 447–469  crossref  mathscinet  zmath  isi  scopus
    55. Alazki H., Poznyak A., “Robust Output Stabilization For a Class of Nonlinear Uncertain Stochastic Systems Under Multiplicative and Additive Noises: the Attractive Ellipsoid Method”, J. Ind. Manag. Optim., 12:1 (2016), 169–186  crossref  mathscinet  zmath  isi  scopus
    56. A. I. Malikov, “State estimation and stabilization of continuous systems with uncertain nonlinearities and disturbances”, Autom. Remote Control, 77:5 (2016), 764–778  mathnet  crossref  isi  elib  elib
    57. M. V. Khlebnikov, “Control of linear systems subjected to exogenous disturbances: combined feedback”, Autom. Remote Control, 77:7 (2016), 1141–1151  mathnet  crossref  isi  elib  elib
    58. K. Zheleznov, “Analysis problem solution with disturbance both in input and output”, Autom. Remote Control, 79:7 (2018), 1311–1318  mathnet  crossref  isi  elib
    59. Sel'vesyuk N.I., “Analytical Synthesis of Robust Controllers of the Given Accuracy Under External Perturbations”, J. Comput. Syst. Sci. Int., 55:4 (2016), 558–569  crossref  mathscinet  zmath  isi  scopus
    60. Tan Ch.K. Wang J. Paw Y.Ch. Liao F., “Autonomous Ship Deck Landing of a Quadrotor Using Invariant Ellipsoid Method”, IEEE Trans. Aerosp. Electron. Syst., 52:2 (2016), 891–903  crossref  isi  elib  scopus
    61. Juarez R. Azhmyakov V. Gadi S.K. Salas F.G., “Robust Control For a Class of Continuous Dynamical System Governed By Semi-Explicit Dae With Data -Sample Outputs”, 2016 13Th International Conference on Electrical Engineering, Computing Science and Automatic Control (Cce), IEEE, 2016  mathscinet  isi
    62. Zheleznov K.O., Khlebnikov M.V., “Tracking Problem For Dynamical Systems With Exogenous and System Disturbances”, 2016 20Th International Conference on System Theory, Control and Computing (Icstcc), International Conference on System Theory Control and Computing, eds. Petre E., Brezovan M., IEEE, 2016, 125–128  isi
    63. K. O. Zheleznov, M. V. Khlebnikov, “Sintez obratnoi svyazi dlya lineinoi sistemy upravleniya s vozmuscheniem na vkhodakh i vykhodakh: robastnaya postanovka”, Probl. upravl., 3 (2017), 11–16  mathnet
    64. Alazki H., Hernandez E., Ibarra J.M., Poznyak A., “Attractive Ellipsoid Method Controller Under Noised Measurements For Slam”, Int. J. Control Autom. Syst., 15:6 (2017), 2764–2775  crossref  mathscinet  isi  scopus
    65. Khlebnikov M.V. Zheleznov K.O., “Feedback Design For Linear Control Systems With Exogenous and System Disturbances: Robust Statement”, 2017 21St International Conference on System Theory, Control and Computing (Icstcc), International Conference on System Theory Control and Computing, ed. Kloetzer M. Ferariu L., IEEE, 2017, 711–716  isi
    66. Zhang K., Jiang B., Yan X.-g., Ma Ya., “Incipient Sensor Fault Detection For Inverter Devices in Electric Railway Traction Systems”, Proceedings of the 36Th Chinese Control Conference (CCC 2017), Chinese Control Conference, eds. Liu T., Zhao Q., IEEE, 2017, 7482–7487  isi
    67. Malikov A.I., “Finite Time Control For One Class of Nonlinear Systems With the H (a) Performance Criterion”, J. Comput. Syst. Sci. Int., 56:3 (2017), 364–384  crossref  zmath  isi  scopus
    68. Zhang K., Jiang B., Yan X.-G., Mao Z., “Incipient Sensor Fault Estimation and Accommodation For Inverter Devices in Electric Railway Traction Systems”, Int. J. Adapt. Control Signal Process., 31:5 (2017), 785–804  crossref  mathscinet  zmath  isi  scopus
    69. K. O. Zheleznov, Ya. I. Kvinto, M. V. Khlebnikov, “Reshenie zadachi slezheniya dlya lineinoi sistemy upravleniya na osnove metoda invariantnykh ellipsoidov”, UBS, 71 (2018), 45–60  mathnet  elib
    70. Soliman H.M., Yousef H.A., Al-Abri R., El-Metwally Kh.A., “Decentralized Robust Saturated Control of Power Systems Using Reachable Sets”, Complexity, 2018, 2563834  crossref  isi
    71. Bondarko V.A. Fradkov A.L., “Adaptive Stabilisation of Discrete Lti Plant With Bounded Disturbances Via Finite Capacity Channel”, Int. J. Control, 91:11, SI (2018), 2451–2459  crossref  mathscinet  isi  scopus
    72. Garcia P., Ampountolas K., “Robust Disturbance Rejection By the Attractive Ellipsoid Method - Part i: Continuous-Time Systems”, IFAC PAPERSONLINE, 51:32 (2018), 34–39  crossref  isi  scopus
    73. Garcia P., Ampountolas K., “Robust Disturbance Rejection By the Attraction Ellipsoid Method - Part II: Discrete-Time Systems”, IFAC PAPERSONLINE, 51:32 (2018), 93–98  crossref  isi  scopus
    74. Romanenko V., Milyavsky Yu., “Study of Automated Control Methods in Cognitive Maps' Impulse Processes With Suppressing Constrained Disturbances”, 2018 IEEE First International Conference on System Analysis & Intelligent Computing (Saic), IEEE, 2018, 19–24  isi
    75. Peregudin A., Furtat I.B., “Optimal Compensation of Bounded External Disturbances and Measurement Noises For Nonlinear Systems”, IFAC PAPERSONLINE, 51:33 (2018), 7–11  crossref  isi  scopus
    76. Chen Yu. Peng H. Grizzle J. Ozay N., “Data-Driven Computation of Minimal Robust Control Invariant Set”, 2018 IEEE Conference on Decision and Control (Cdc), IEEE Conference on Decision and Control, IEEE, 2018, 4052–4058  isi
    77. Ordaz P., Ordaz M., Cuvas C., Santos O., “Reduction of Matched and Unmatched Uncertainties For a Class of Nonlinear Perturbed Systems Via Robust Control”, Int. J. Robust Nonlinear Control, 29:8 (2019), 2510–2524  crossref  isi
    78. Ya. I. Kvinto, M. V. Khlebnikov, “Verkhnie otsenki otklonenii traektorii v lineinoi dinamicheskoi sisteme s ogranichennymi vneshnimi vozmuscheniyami”, Probl. upravl., 3 (2019), 16–21  mathnet  crossref
  • Avtomatika i Telemekhanika
    Number of views:
    This page:686
    Full text:299
    References:51
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020