RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, Number 3, Pages 13–29 (Mi basm233)  

This article is cited in 1 scientific paper (total in 1 paper)

Research articles

Postoptimal analysis of multicriteria combinatorial center location problem

Vladimir Emelicheva, Eberhard Girlichb, Olga Karelkinaa

a Belarusian State University, Minsk, Belarus
b Otto-von-Guericke-Universitat, Magdeburg, Germany

Abstract: A multicriteria variant of a well known combinatorial MINMAX location problem with Pareto and lexicographic optimality principles is considered. Necessary and sufficient conditions of an optimal solution stability of such problems to the initial data perturbations are formulated in terms of binary relations. Numerical examples are given.

Keywords and phrases: center location problem, Pareto optimal trajectory, lexicographically optimal trajectory, perturbing matrix, trajectory stability, binary relations, stability criteria.

Full text: PDF file (218 kB)
References: PDF file   HTML file

Bibliographic databases:

Document Type: Article
MSC: 90C27, 90C29, 90C31, 90C47
Received: 21.10.2009
Language: English

Citation: Vladimir Emelichev, Eberhard Girlich, Olga Karelkina, “Postoptimal analysis of multicriteria combinatorial center location problem”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2009, no. 3, 13–29

Citation in format AMSBIB
\Bibitem{EmeGirKar09}
\by Vladimir~Emelichev, Eberhard~Girlich, Olga~Karelkina
\paper Postoptimal analysis of multicriteria combinatorial center location problem
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2009
\issue 3
\pages 13--29
\mathnet{http://mi.mathnet.ru/basm233}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2643151}
\zmath{https://zbmath.org/?q=an:1209.90299}


Linking options:
  • http://mi.mathnet.ru/eng/basm233
  • http://mi.mathnet.ru/eng/basm/y2009/i3/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. E. Ivanko, “Adaptive stability in combinatorial optimization problems”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 79–87  mathnet  crossref  mathscinet  isi  elib
  • Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Number of views:
    This page:178
    Full text:31
    References:28
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019