RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, Number 3, Pages 45–50 (Mi basm269)  

Research articles

On quasiidenties of torsion free nilpotent loops

Alexandru Covalschi

State Pedagogical University "Ion Creangă", Chisinău, Moldova

Abstract: It is proved that any loop which contains an infinite cyclic group and does not contain infinite number of relative prime periodic elements has an infinite and independent basis of quasiidentities. In particular, any torsion free nilpotent loop has an infinite and independent basis of quasiidentities.

Keywords and phrases: quasigroup, loop, quasiidentities, basis of quasiidentities, independent basis, coverage.

Full text: PDF file (108 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 17D05, 20N05
Received: 19.11.2010
Language:

Citation: Alexandru Covalschi, “On quasiidenties of torsion free nilpotent loops”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3, 45–50

Citation in format AMSBIB
\Bibitem{Cov10}
\by Alexandru~Covalschi
\paper On quasiidenties of torsion free nilpotent loops
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2010
\issue 3
\pages 45--50
\mathnet{http://mi.mathnet.ru/basm269}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2791976}
\zmath{https://zbmath.org/?q=an:1231.68227|1247.20072}


Linking options:
  • http://mi.mathnet.ru/eng/basm269
  • http://mi.mathnet.ru/eng/basm/y2010/i3/p45

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Number of views:
    This page:76
    Full text:26
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019