|
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, Number 2, Pages 60–69
(Mi basm288)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Some addition theorems for rectifiable spaces
Alexander V. Arhangel'skiia, Mitrofan M. Chobanb a Moscow, Russia
b Department of Mathematics, Tiraspol State University, Chişinău, Moldova
Abstract:
We establish that if a compact Hausdorff space $B$ with the cardinality less than $2^{\omega_1}$ is represented as the union of two non-locally compact rectifiable subspaces $X$ and $Y$, then $X,Y$ and $B$ are separable and metrizable.
Keywords and phrases:
rectifiable space, topological group, remainder, compactification, tightness, $\pi$-base, first-countability, countable type.
Full text:
PDF file (138 kB)
References:
PDF file
HTML file
Bibliographic databases:
MSC: 54B05 Received: 21.06.2011
Language:
Citation:
Alexander V. Arhangel'skii, Mitrofan M. Choban, “Some addition theorems for rectifiable spaces”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2, 60–69
Citation in format AMSBIB
\Bibitem{ArkCho11}
\by Alexander V.~Arhangel'skii, Mitrofan M.~Choban
\paper Some addition theorems for rectifiable spaces
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2011
\issue 2
\pages 60--69
\mathnet{http://mi.mathnet.ru/basm288}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2895777}
\zmath{https://zbmath.org/?q=an:1248.54008}
Linking options:
http://mi.mathnet.ru/eng/basm288 http://mi.mathnet.ru/eng/basm/y2011/i2/p60
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
L. I. Calmuţchi, M. M. Choban, “On Wallman compactifications of $T_0$-spaces and related questions”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 2, 102–111
|
Number of views: |
This page: | 230 | Full text: | 75 | References: | 42 | First page: | 1 |
|