RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Bul. Acad. Ştiinţe Repub. Mold. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, Number 2, Pages 74–80 (Mi basm312)  

The generalized Lagrangian mechanical systems

Radu Miron

"Al. Ioan Cuza" University, Iaşi, România

Abstract: A generalized Lagrangian mechanics is a triple $\Sigma_{GL}=(M,\mathcal E,F_e)$ formed by a real $n$-dimensional manifold $M$, the generalized kinetic energy $\mathcal E$ and the external forces $F_e$. The Lagrange equations (or fundamental equations) can be defined for a generalized Lagrangian mechanical system $\Sigma_{GL}$. We get a straightforward extension of the notions of Riemannian, or Finslerian, or Lagrangian mechanical systems studied in the recent book [7]. The applications of this systems in Mechanics, Physical Fields or Relativistic Optics are pointed out. Much more information can be found in the books or papers from References [1–10].

Keywords and phrases: generalized Lagrangian system, Lagrange equations, generalized kinetic energy.

Full text: PDF file (109 kB)
References: PDF file   HTML file

Bibliographic databases:
MSC: 53B40, 53C60
Received: 25.08.2012
Language:

Citation: Radu Miron, “The generalized Lagrangian mechanical systems”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2012, no. 2, 74–80

Citation in format AMSBIB
\Bibitem{Mir12}
\by Radu~Miron
\paper The generalized Lagrangian mechanical systems
\jour Bul. Acad. \c Stiin\c te Repub. Mold. Mat.
\yr 2012
\issue 2
\pages 74--80
\mathnet{http://mi.mathnet.ru/basm312}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3060803}
\zmath{https://zbmath.org/?q=an:06179497}


Linking options:
  • http://mi.mathnet.ru/eng/basm312
  • http://mi.mathnet.ru/eng/basm/y2012/i2/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica
    Number of views:
    This page:231
    Full text:35
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019