RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Главная страница
О проекте
Программное обеспечение
Классификаторы
Полезные ссылки
Пользовательское
соглашение

Поиск публикаций
Поиск ссылок

RSS
Текущие выпуски
Архивные выпуски
Что такое RSS






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


CEUR Workshop Proceedings, 2013, том 1014, страницы 316–327 (Mi ceur2)  

Query Rewriting over Shallow Ontologies

S. Kikota, R. Kontchakova, V. Podolskiib, M. Zakharyascheva

a Department of Computer Science and Information Systems, Birkbeck, University of London, United Kingdom
b Steklov Mathematical Institute, Moscow, Russian Federation

Аннотация: We investigate the size of rewritings of conjunctive queries over $OWL2QL$ ontologies of depth 1 and 2 by means of a new hypergraph formalism for computing Boolean functions. Both positive and negative results are obtained. All conjunctive queries over ontologies of depth 1 have polynomial-size nonrecursive datalog rewritings; treeshaped queries have polynomial-size positive existential rewritings; however, for some queries and ontologies of depth 1, positive existential rewritings can only be of superpolynomial size. Both positive existential and nonrecursive datalog rewritings of conjunctive queries and ontologies of depth 2 suffer an exponential blowup in the worst case, while first-order rewritings can grow superpolynomially unless $\mathrm{NP \subseteq P/poly}$.


Реферативные базы данных:

Тип публикации: Статья
Язык публикации: английский

Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/ceur2

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:29

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018