RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Contributions to Game Theory and Management:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Contributions to Game Theory and Management, 2010, том 3, страницы 421–430 (Mi cgtm101)  

The Nucleolus and the $\tau$-value of Interval Games

Elena B. Yanovskaya

St. Petersburg Institute for Economics and Mathematics, Russian Academy of Sciences, Tchaikovsky st. 1, St. Petersburg, 191187, Russia

Аннотация: Interval cooperative games model situations with cooperation in which the agents do not know for certain their coalitional payoffs, they know only bounds for the payoffs. Cooperative interval games have been introduced and studied in (Alparslan Gök, Branzei and Tijs, 2008, Branzei, Tijs and Alparslan Gök, 2008). Each interval game is defined by two cooperative games – the lower and the upper games – whose characteristic function values are bounds of the coalitional payoffs. Solutions for interval games are defined also in interval form. A TU game value $\varphi$ generates the interval value for the corresponding class of interval games if the value of the upper game dominates the value of the lower game. In (Alparslan Gök, Miquel and Tijs, 2009) it was shown how some monotonicity properties of some TU game values provide existence of the corresponding interval values for the class of convex interval games. However, the nucleolus and the $\tau$-value on this class do not possess such properties. Thus, in this paper the nucleolus for the interval values is defined as the result of the lexicographic minimization of the joint excess vector for upper and lower games. Its existence has been proved. The existence of the $\tau$-value is proved on the subclass of convex interval game generated by totally positive upper and lower games.

Ключевые слова: interval cooperative game, convex game, totally positive game, nucleolus, $\tau$-value.

Полный текст: PDF файл (219 kB)
Список литературы: PDF файл   HTML файл
Тип публикации: Статья
Язык публикации: английский

Образец цитирования: Elena B. Yanovskaya, “The Nucleolus and the $\tau$-value of Interval Games”, Contributions to Game Theory and Management, 3 (2010), 421–430

Цитирование в формате AMSBIB
\RBibitem{Yan10}
\by Elena~B.~Yanovskaya
\paper The Nucleolus and the $\tau$-value of Interval Games
\jour Contributions to Game Theory and Management
\yr 2010
\vol 3
\pages 421--430
\mathnet{http://mi.mathnet.ru/cgtm101}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cgtm101
  • http://mi.mathnet.ru/rus/cgtm/v3/p421

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:470
    Полный текст:181
    Литература:35
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021