|
Contributions to Game Theory and Management, 2019, том 12, страницы 246–260
(Mi cgtm346)
|
|
|
|
Pure stationary nash equilibria for discounted stochastic positional games
Dmitrii Lozovanua, Stefan Picklb a Institute of Mathematics and Computer Science of Moldova Academy of Sciences, Academiei 5, Chisinau, MD-2028, Moldova
b Institute for Theoretical Computer Science, Mathematics and Operations Research, Universität der Bundeswehr München, 85577 Neubiberg-München, Germany
Аннотация:
A discounted stochastic positional game is a stochastic game with
discounted payoffs in which the set of states is divided into
several disjoint subsets such that each subset represents the
position set for one of the player and each player control the
Markov decision process only in his position set. In such a game
each player chooses actions in his position set in order to
maximize the expected discounted sum of his stage rewards. We show
that an arbitrary discounted stochastic positional game with finite
state and action spaces possesses a Nash equilibrium in pure
stationary strategies. Based on the proof of this result we present
conditions for determining all optimal pure stationary strategies of
the players.
Ключевые слова:
stochastic positional games, discounted payoffs, pure stationary strategies, mixed stationary strategies, Nash equilibria.
Полный текст:
PDF файл (311 kB)
Тип публикации:
Статья
Язык публикации: английский
Образец цитирования:
Dmitrii Lozovanu, Stefan Pickl, “Pure stationary nash equilibria for discounted stochastic positional games”, Contributions to Game Theory and Management, 12 (2019), 246–260
Цитирование в формате AMSBIB
\RBibitem{LozPic19}
\by Dmitrii~Lozovanu, Stefan~Pickl
\paper Pure stationary nash equilibria for discounted stochastic positional games
\jour Contributions to Game Theory and Management
\yr 2019
\vol 12
\pages 246--260
\mathnet{http://mi.mathnet.ru/cgtm346}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/cgtm346 http://mi.mathnet.ru/rus/cgtm/v12/p246
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 16 | Полный текст: | 6 |
|