Чебышевский сборник
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сб., 2021, том 22, выпуск 2, страницы 304–312 (Mi cheb1035)  

Арифметические свойства значений в полиадической лиувиллевой точке рядов эйлерова типа с полиадическим лиувиллевым параметром

В. Г. Чирскийab

a Московский государственный университет им. М. В. Ломоносова (г. Москва)
b Российская академия народного хозяйства и государственной службы (г. Москва)

Аннотация: В статье исследуется бесконечная линейная независимость полиадических чисел
$$ f_{0}(\lambda)=\sum_{n=0}^\infty (\lambda)_{n}\lambda^{n}, f_{1}(\lambda)=\sum_{n=0}^\infty (\lambda +1)_{n}\lambda^{n},$$
где $ \lambda $ представляет собой некоторое полиадическое лиувиллево число.Как обычно, символ Похгаммера обозначается $(\gamma)_{n}$ , по определению, $(\gamma)_{0}=1$ , а при $n\geq 1$ имеем $ (\gamma)_{n}=\gamma(\gamma+1)…(\gamma+n-1)$. Рассматриваемые ряды сходятся в любом поле $ \mathbb{\mathrm{Q}}_p $. Результат является непосредственным продолжением проведенного автором исследования арифметических свойств полиадических чисел
$$ f_{0}(1)=\sum_{n=0}^\infty (\lambda)_{n}, f_{1}(1)=\sum_{n=0}^\infty (\lambda +1)_{n},$$
Значения обобщенных гипергеометрических рядов являются объектом исследования многочисленных работ. Если параметры рядов представляют собой рациональные числа, то такие ряды входят либо в класс $E-$ функций( если эти ряды — целые функции), либо в класс $G-$ функций (если они имеют конечный ненулевой радиус сходимости),либо в класс $F-$ рядов ( в случае нулевого радиуса сходимости в поле комплексных чисел, однако при этом они сходятся в полях $p-$ адических чисел). Во всех перечисленных случаях применим метод Зигеля-Шидловского и его обобщения. Если среди параметров рядов содержатся алгебраические иррациональные числа, то исследование их арифметических свойств ведется на основе приближений Эрмита-Паде.
В рассматриваемом случае параметр — трансцендентное число. Следует отметить, что ранее А.И. Галочкин доказал алгебраическую независимость значений $E-$функций в точке, представляющей собой действительное число Лиувилля. Упомянем также поданные в печать работы Е.Ю. Юденковой о значениях $F-$рядов в полиадических лиувиллевых точках. Особенно отметим, что в этой работе рассматриваются значения в полиадической трансцендентной точке гипергеометрических рядов, параметр которых - полиадическое трансцендентное (лиувиллево) число.

Ключевые слова: полиадические числа Лиувилля, бесконечная линейная независимость.

DOI: https://doi.org/10.22405/2226-8383-2018-22-2-304-312

Полный текст: PDF файл (633 kB)

Тип публикации: Статья
УДК: 511.36

Образец цитирования: В. Г. Чирский, “Арифметические свойства значений в полиадической лиувиллевой точке рядов эйлерова типа с полиадическим лиувиллевым параметром”, Чебышевский сб., 22:2 (2021), 304–312

Цитирование в формате AMSBIB
\RBibitem{Chi21}
\by В.~Г.~Чирский
\paper Арифметические свойства значений в полиадической лиувиллевой точке рядов эйлерова типа с полиадическим лиувиллевым параметром
\jour Чебышевский сб.
\yr 2021
\vol 22
\issue 2
\pages 304--312
\mathnet{http://mi.mathnet.ru/cheb1035}
\crossref{https://doi.org/10.22405/2226-8383-2018-22-2-304-312}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cheb1035
  • http://mi.mathnet.ru/rus/cheb/v22/i2/p304

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:16
    Полный текст:6
     
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021