RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2010, Volume 11, Issue 2, Pages 4–24 (Mi cheb175)  

An asymptotic formula for the expectation of finite elliptic Minkowski fractions

O. A. Gorkusha

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: We prove asymptotic formulae with two significant terms for the expectation of the random variable $\nu(c/d)$ — length of Minkowski continued fraction with parametre $\Omega=2$ when the variables $c$ and $d$ range over the set $1\le c\le d\le R<\infty$.

Full text: PDF file (350 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 511.9
MSC: Primary 11A55; Secondary 11A05
Received: 02.11.2010

Citation: O. A. Gorkusha, “An asymptotic formula for the expectation of finite elliptic Minkowski fractions”, Chebyshevskii Sb., 11:2 (2010), 4–24

Citation in format AMSBIB
\Bibitem{Gor10}
\by O.~A.~Gorkusha
\paper An asymptotic formula for the expectation of finite elliptic Minkowski fractions
\jour Chebyshevskii Sb.
\yr 2010
\vol 11
\issue 2
\pages 4--24
\mathnet{http://mi.mathnet.ru/cheb175}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2919782}


Linking options:
  • http://mi.mathnet.ru/eng/cheb175
  • http://mi.mathnet.ru/eng/cheb/v11/i2/p4

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:122
    Full text:65
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020