Chebyshevskii Sbornik General information Latest issue Archive Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Chebyshevskii Sb.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Chebyshevskii Sb., 2014, Volume 15, Issue 3, Pages 31–47 (Mi cheb351)  Waring’s problem involving natural numbers of a special type

S. A. Gritsenkoab, N. N. Motkinac

a M. V. Lomonosov Moscow State University
b Financial University under the Government of the Russian Federation, Moscow
c Belgorod State University

Abstract: In 2008–2011, we solved several well–known additive problems such that Ternary Goldbach's Problem, Hua Loo Keng's Problem, Lagrange's Problem with restriction on the set of variables. Asymptotic formulas were obtained for these problems. The main terms of our formulas differ from ones of the corresponding classical problems.
In the main terms the series of the form
$$\sigma_k (N,a,b)=\sum_{|m|<\infty} e^{2\pi i m(\eta N-0,5 k(a+b))} \frac{\sin^k \pi m (b-a)}{\pi ^k m^k}.$$
appear.
These series were investigated by the authors.
Suppose that $k\ge 2$ and $n\ge 1$ are naturals. Consider the equation
$$\qquad\qquad\qquad\qquad\qquad\qquad x_1^n+x_2^n+\ldots+x_k^n=N\qquad\qquad\qquad\qquad\qquad\qquad\qquad(1)$$
in natural numbers $x_1, x_2, \ldots, x_k$. The question on the number of solutions of the equation (1) is Waring's problem. Let $\eta$ be the irrational algebraic number, $n\ge 3$,
$$k\ge k_0 = \{ \begin{array}{ll} 2^n+1, & if 3\le n\le 10, 2[n^2(2\log n+\log \log n +5)], &if n>10. \end{array} .$$
In this report we represent the variant of Waring's Problem involving natural numbers such that $a\le\{\eta x_i^n\}<b$, where $a$ and $b$ are arbitrary real numbers of the interval $[0,1)$.
Let $J(N)$ be the number of solutions of (1) in natural numbers of a special type, and $I(N)$ be the number of solutions of (1) in arbitrary natural numbers. Then the equality holds
$$J(N)\sim I(N)\sigma_k(N,a,b).$$

The series $\sigma_k(N,a,b)$ is presented in the main term of the asymptotic formula in this problem as well as in Goldbach's Problem, Hua Loo Keng's Problem.
Bibliography: 20 titles.

Keywords: Waring’s Problem, additive problems, numbers of a special type, number of solutions, asymptotic formula, quadratic irrationality, irrational algebraic number. Full text: PDF file (621 kB) References: PDF file   HTML file
UDC: 511.34

Citation: S. A. Gritsenko, N. N. Motkina, “Waring’s problem involving natural numbers of a special type”, Chebyshevskii Sb., 15:3 (2014), 31–47 Citation in format AMSBIB
\Bibitem{GriMot14} \by S.~A.~Gritsenko, N.~N.~Motkina \paper Waring’s problem involving natural numbers of a special type \jour Chebyshevskii Sb. \yr 2014 \vol 15 \issue 3 \pages 31--47 \mathnet{http://mi.mathnet.ru/cheb351} 

• http://mi.mathnet.ru/eng/cheb351
• http://mi.mathnet.ru/eng/cheb/v15/i3/p31

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. A. A. Zhukova, A. V. Shutov, “Binarnaya additivnaya zadacha s chislami spetsialnogo vida”, Chebyshevskii sb., 16:3 (2015), 246–275  2. S. A. Gritsenko, N. N. Motkina, “O razreshimosti uravneniya Varinga v naturalnykh chislakh spetsialnogo vida”, Chebyshevskii sb., 17:1 (2016), 37–51  3. A. A. Zhukova, A. V. Shutov, “Geometrizatsiya sistem schisleniya”, Chebyshevskii sb., 18:4 (2017), 222–245   4. A. A. Zhukova, A. V. Shutov, “Additivnaya zadacha s $k$ chislami spetsialnogo vida”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Aktualnye problemy prikladnoi matematiki”. Kabardino-Balkarskaya respublika, Nalchik, Prielbruse, 22–26 maya 2018 g. Chast II, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 166, VINITI RAN, M., 2019, 10–21  •  Number of views: This page: 299 Full text: 103 References: 40 Contact us: math-net2021_10 [at] mi-ras ru Terms of Use Registration to the website Logotypes © Steklov Mathematical Institute RAS, 2021