RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2014, Volume 15, Issue 4, Pages 32–54 (Mi cheb359)  

Combinatorial Group Theory in Ivanovo State University

D. I. Moldavanskii

Ivanovo State University

Abstract: Outlines of the history of researches on the Combinatorial Group Theory in the Ivanovo State University and an overview of the results obtained from 60-s of the last century up to the present. The results that are presented concern mainly to the study of property of residual finiteness of groups and of its various generalizations as applied to free constructions of groups and to the one-relator groups.
Bibliography: 76 titles.

Keywords: generalized free product of groups, $HNN$-extension, one-related groups, residually finite groups.

Full text: PDF file (216 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 512.543
Received: 30.11.2014

Citation: D. I. Moldavanskii, “Combinatorial Group Theory in Ivanovo State University”, Chebyshevskii Sb., 15:4 (2014), 32–54

Citation in format AMSBIB
\Bibitem{Mol14}
\by D.~I.~Moldavanskii
\paper Combinatorial Group Theory in Ivanovo State University
\jour Chebyshevskii Sb.
\yr 2014
\vol 15
\issue 4
\pages 32--54
\mathnet{http://mi.mathnet.ru/cheb359}


Linking options:
  • http://mi.mathnet.ru/eng/cheb359
  • http://mi.mathnet.ru/eng/cheb/v15/i4/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:146
    Full text:66
    References:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019