General information
Latest issue

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Chebyshevskii Sb.:

Personal entry:
Save password
Forgotten password?

Chebyshevskii Sb., 2015, Volume 16, Issue 3, Pages 147–182 (Mi cheb413)  

This article is cited in 3 scientific papers (total in 3 papers)

About minimal polynomial residual fractions for algebraic irrationalities

N. M. Dobrovol'skiia, N. N. Dobrovol'skiib

a Tula State Pedagogical University
b MBOU SOSH 56, Tula

Abstract: We study the appearance and properties of minimal residual fractions of polynomials in the decomposition of algebraic numbers into continued fractions.
It is shown that for purely real algebraic irrationalities $\alpha$ of degree $n\ge2$, starting from some number $m_0=m_0(\alpha)$, the sequence of residual fractions $\alpha_m$ is a sequence of given algebraic irrationalities.
The definition of the generalized number of Piso, which differs from the definition of numbers he's also the lack of any requirement of integrality.
It is shown that for arbitrary real algebraic irrationals $\alpha$ of degree $n\ge2$, starting from some number $m_0=m_0(\alpha)$, the sequence of residual fractions $\alpha_m$ is a sequence of generalized numbers Piso.
Found an asymptotic formula for the conjugate number to the residual fractions of generalized numbers Piso. From this formula it follows that associated to the residual fraction $\alpha_m$ are concentrated about fractions $-\frac{Q_{m-2}}{Q_{m-1}}$ is either in the interval of radius $O(\frac1{Q_{m-1}^2})$ in the case of purely real algebraic irrationals, or in circles with the same radius in the General case of real algebraic irrationals, which have complex conjugate of a number.
It is established that, starting from some number $m_0=m_0(\alpha)$, fair recurrent formula for incomplete private $q_m$ expansions of real algebraic irrationals $\alpha$, Express $q_m$ using the values of the minimal polynomial $f_{m-1}(x)$ for residual fractions $\alpha_{m-1}$ and its derivative at the point $q_{m-1}$.
Found recursive formula for finding the minimal polynomials of the residual fractions using fractional-linear transformations. Composition this fractional-linear transformation is a fractional-linear transformation that takes the system conjugate to an algebraic irrationality of $\alpha$ in the system of associated to the residual fraction, with a pronounced effect of concentration about rational fraction $-\frac{Q_{m-2}}{Q_{m-1}}$.
It is established that the sequence of minimal polynomials for the residual fractions is a sequence of polynomials with equal discriminantly.
In conclusion, the problem of the rational structure of a conjugate of the spectrum of a real algebraic irrational number $\alpha$ and its limit points.
Bibliography: 20 titles.

Keywords: minimal polynomial, given an algebraic irrationality, generalized number Piso, residual fractions, continued fractions.

Full text: PDF file (368 kB)
References: PDF file   HTML file
UDC: 511.3
Received: 04.07.2015

Citation: N. M. Dobrovol'skii, N. N. Dobrovol'skii, “About minimal polynomial residual fractions for algebraic irrationalities”, Chebyshevskii Sb., 16:3 (2015), 147–182

Citation in format AMSBIB
\by N.~M.~Dobrovol'skii, N.~N.~Dobrovol'skii
\paper About minimal polynomial residual fractions for algebraic irrationalities
\jour Chebyshevskii Sb.
\yr 2015
\vol 16
\issue 3
\pages 147--182

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, N. N. Dobrovolskii, E. A. Matveeva, “O drobno-lineinykh preobrazovaniyakh form A. Tue–M. N. Dobrovolskogo–V. D. Podsypanina”, Chebyshevskii sb., 18:2 (2017), 54–97  mathnet  crossref  elib
    2. N. M. Dobrovolskii, N. N. Dobrovolskii, D. K. Sobolev, V. N. Soboleva, “Klassifikatsiya chisto-veschestvennykh algebraicheskikh irratsionalnostei”, Chebyshevskii sb., 18:2 (2017), 98–128  mathnet  crossref  elib
    3. S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85  mathnet  crossref  elib
  • Number of views:
    This page:186
    Full text:69

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020