RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сб., 2015, том 16, выпуск 3, страницы 295–305 (Mi cheb420)  

О совместных приближениях

П. Л. Иванков

Московский государственный технический университет им. Н. Э. Баумана

Аннотация: В работе рассматриваются обобщенные гипергеометрические функции и их производные (см. (2) и (3)). Изучение арифметической природы значений таких функций обычно начинается с построения функциональной линейной приближающей формы, имеющей достаточно высокий порядок нуля в начале координат. Если параметры изучаемых функций (в данном случае это числа (1)) рациональны, то построение такой формы можно осуществить с помощью принципа Дирихле. Дальнейшие рассуждения опираются на использование построенной формы, а вся схема получила название метода Зигеля, см. [1] и [2].
Если некоторые из чисел (1) иррациональны, то функции (2) и (3) не сводятся к так называемым $E$-функциям и применить метод Зигеля (в его классической форме) не удается, причем схема не срабатывает в самом начале: невозможно с помощью принципа Дирихле построить первую приближающую линейную функциональную форму (в ходе рассуждений по методу Зигеля используется целая совокупность таких форм).
Было замечено, что в некоторых случаях первую приближающую форму можно построить эффективно (см., например, [3] и [4]). Имея в своем распоряжении такую форму можно, рассуждая по схеме Зигеля (или используя специальные свойства эффективно построенной линейной формы), получить требуемые результаты. Эти результаты в смысле общности обычно значительно уступают тем, которые могут быть получены методом Зигеля, однако у метода, основанного на применении эффективных конструкций, есть и свои достоинства. Одно из них состоит в том, что этот метод во многих случаях применим и тогда, когда некоторые из параметров (1) иррациональны. Другим достоинством является бо́льшая точность оценок (если речь идет, например, об оценке мер линейной назависимости), получаемых этим методом.
Все вышесказанное относится к случаю, когда рассматриваемые функции не продифференцированы по параметру. Применение метода Зигеля для продифференцированных по параметру функций (таких, например, как функции (4) и (5)) возможно, и оно было фактически осуществлено в ряде работ; см. замечания к седьмой главе книги А. Б. Шидловского [5]. Но по-прежнему здесь требуется рациональность параметров изучаемых функций, а получаемые количественные результаты недостаточно точны.
Проведенные исследования показывают, что использование совместных приближений вместо построения линейной приближающей формы практически всегда дает лучшие результаты. Поэтому, хотя появление (относительно недавно) эффективных конструкций линейных приближающих форм для продифференцированных по параметру гипергеометрических функций и позволило решить ряд относящихся сюда задач, основные новые результаты были получены именно с помощью совместных приближений, которые также могут быть построены эффективно.
В настоящей работе предлагается новая эффективная конструкция совместных приближений для продифференцированных по параметру гипергеометрических функций в однородном случае. Относительно возможных приложений этой конструкции даются лишь краткие указания: можно получить результаты о линейной независимости значений функций вида (5) в случае иррациональности некоторых из чисел (1); можно также уточнить некоторые из относящихся сюда количественных результатов.
Библиография: 15 названий.

Ключевые слова: обобщенные гипергеометрические функции, иррациональные параметры, дифференцирование по параметру, оценки линейных форм.

Полный текст: PDF файл (256 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:
Тип публикации: Статья
УДК: 511.361
Поступила в редакцию: 31.05.2015

Образец цитирования: П. Л. Иванков, “О совместных приближениях”, Чебышевский сб., 16:3 (2015), 295–305

Цитирование в формате AMSBIB
\RBibitem{Iva15}
\by П.~Л.~Иванков
\paper О совместных приближениях
\jour Чебышевский сб.
\yr 2015
\vol 16
\issue 3
\pages 295--305
\mathnet{http://mi.mathnet.ru/cheb420}
\elib{http://elibrary.ru/item.asp?id=24398939}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cheb420
  • http://mi.mathnet.ru/rus/cheb/v16/i3/p295

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:108
    Полный текст:48
    Литература:30
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020