RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2015, Volume 16, Issue 3, Pages 339–354 (Mi cheb423)  

Algebraic independence of certain almost polyadic series

V. Yu. Matveev

Moscow Institute of Electromechanics and Automation

Abstract: We study the arithmetic properties of almost polyadic numbers
$$\sum_{n=1}^\infty a_{i}(a_{i}+b_{i})\ldots(a_{i}+(n-1)b_{i}),i=1,...,m,$$
where the numbers $a_{i},b_{i}\in\mathbb Z$, $(a_{i},b_{i})=1$.
Bibliography: 15 titles.

Keywords: almost polyadic numbers.

Full text: PDF file (287 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 511.36
Received: 15.06.2015

Citation: V. Yu. Matveev, “Algebraic independence of certain almost polyadic series”, Chebyshevskii Sb., 16:3 (2015), 339–354

Citation in format AMSBIB
\Bibitem{Mat15}
\by V.~Yu.~Matveev
\paper Algebraic independence of certain almost polyadic series
\jour Chebyshevskii Sb.
\yr 2015
\vol 16
\issue 3
\pages 339--354
\mathnet{http://mi.mathnet.ru/cheb423}
\elib{http://elibrary.ru/item.asp?id=24398942}


Linking options:
  • http://mi.mathnet.ru/eng/cheb423
  • http://mi.mathnet.ru/eng/cheb/v16/i3/p339

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:87
    Full text:28
    References:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019