Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2016, Volume 17, Issue 1, Pages 130–139 (Mi cheb458)  

Linear sums and the Gaussian multiplication theorem

O. V. Kolpakova, V. N. Chubarikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Estimations of linear sums with Bernoulli polynomial of the first degree are given. If the coefficient of the linear function is a irrational number with the bounded partial quotients, the arithmetical sum has the “squaring” estimation. The Roth's theorem gives the similar estimation for all algebraic number, but the constants in estimations be nonefficient. New difficulties appears for sums over primes. Their are connected with the consideration of bilinear forms.
Bibliography: 24 titles.

Keywords: arithmetical sums, the Gaussian multiplication theorem for the Euler's Gamma-function, the functional theorem of the Gaussian type, the Bernoulli polynomials, algebraic numbers, arithmetical sums over primes, the Roth's theorem.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00071_


Full text: PDF file (762 kB)
References: PDF file   HTML file
UDC: 511.3
Received: 08.12.2015
Accepted:10.03.2016

Citation: O. V. Kolpakova, V. N. Chubarikov, “Linear sums and the Gaussian multiplication theorem”, Chebyshevskii Sb., 17:1 (2016), 130–139

Citation in format AMSBIB
\Bibitem{KolChu16}
\by O.~V.~Kolpakova, V.~N.~Chubarikov
\paper Linear sums and the Gaussian multiplication theorem
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 1
\pages 130--139
\mathnet{http://mi.mathnet.ru/cheb458}
\elib{https://elibrary.ru/item.asp?id=25795075}


Linking options:
  • http://mi.mathnet.ru/eng/cheb458
  • http://mi.mathnet.ru/eng/cheb/v17/i1/p130

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:242
    Full text:95
    References:46

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022