RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sb., 2016, Volume 17, Issue 1, Pages 140–147 (Mi cheb459)  

This article is cited in 4 scientific papers (total in 4 papers)

On non-linear Kloosterman sum

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Exponential sums of a special type — so-called Kloosterman sums — play key role in the series of number-theoretic problems concerning the distribution of inverse residues in the residual rings of given modulo $q$. At the same time, in many cases, the estimates of such sums are based on A. Weil's bound of so-called complete Kloosterman sum of prime modulo. This bound allows one to estimate Kloosterman sums of length $N\ge q^{0.5+\varepsilon}$ for any fixed $\varepsilon>0$ with power-saving factor. Weil's bound was proved originally by methods of algebraic geometry. Later, S. A. Stepanov gave an elementary proof of this bound, but this proof was also complete enough. The aim of this paper is to give an elementary proof of Kloosterman sum of length $N\ge q^{0.5+\varepsilon}$, which also leads to power-saving factor. This proof is based on the trick of “additive shift” of the variable of summation which is widely used in different problems of number theory.
Bibliography: 15 titles.

Keywords: inverse residues, Kloosterman sums, Weil's bound.

Funding Agency Grant Number
Russian Science Foundation 14-11-00433


Full text: PDF file (699 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 511.321
Received: 07.12.2015
Accepted:10.03.2016

Citation: M. A. Korolev, “On non-linear Kloosterman sum”, Chebyshevskii Sb., 17:1 (2016), 140–147

Citation in format AMSBIB
\Bibitem{Kor16}
\by M.~A.~Korolev
\paper On non-linear Kloosterman sum
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 1
\pages 140--147
\mathnet{http://mi.mathnet.ru/cheb459}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3476245}
\elib{http://elibrary.ru/item.asp?id=25795076}


Linking options:
  • http://mi.mathnet.ru/eng/cheb459
  • http://mi.mathnet.ru/eng/cheb/v17/i1/p140

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. A. Korolev, “Metody otsenok korotkikh summ Kloostermana”, Chebyshevskii sb., 17:4 (2016), 79–109  mathnet  crossref  mathscinet  elib
    2. M. A. Korolev, “Kloosterman sums with multiplicative coefficients”, Izv. Math., 82:4 (2018), 647–661  mathnet  crossref  crossref  adsnasa  isi  elib
    3. M. A. Korolev, “Elementary Proof of an Estimate for Kloosterman Sums with Primes”, Math. Notes, 103:5 (2018), 761–768  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659  mathnet  crossref  crossref  adsnasa  isi  elib
  • Number of views:
    This page:243
    Full text:67
    References:44

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019