  RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  General information Latest issue Archive Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Chebyshevskii Sb.: Year: Volume: Issue: Page: Find

 Personal entry: Login: Password: Save password Enter Forgotten password? Register

 Chebyshevskii Sb., 2016, Volume 17, Issue 1, Pages 201–216 (Mi cheb464)  Sums of characters modulo a cubefree at shifted primes

Z. Kh. Rakhmonov, Sh. Kh. Mirzorakhimov

Institute of Mathematics, Academy of Sciences of Republic of Tajikistan, Dushanbe

Abstract: Vinogradov's method of estimation of exponential sums over primes allowed him to solve the number of arithmetic problems with primes. One of them is a problem of distribution of the values of non-principal character on the sequence of shifted primes. In 1938 he proved that if $q$ is an odd prime, $(l, q)=1$, $\chi (a)$ is non-principal character modulo $q$, then
\begin{equation} T(\chi )=\sum_{p\le x}\chi (p-l)\ll x^{1+\varepsilon} (\sqrt{\frac{1}{q}+\frac{q}{x}} +x^{-\frac{1}{6}}). \tag{IMV} \end{equation}
This estimate is non-trivial when $x\gg q^{1+\varepsilon}$ and an asymptotic formula for the the number of quadratic residues (non-residues) modulo $q$ of the form $p-l$, $p\le x$ follows from it. Later in 1953, I. M. Vinogradov obtained a non-trivial estimate of $T(\chi )$ when $x\ge q^{0,75+\varepsilon}$, $q$ is a prime. It was a surprising result. In fact, $T(\chi )$ can be represented as a sum over zeroes of correspondent Dirichlet $L$ — function; So a non-trivial estimate of $T(\chi )$ is obtained only for $x \ge q^{1+\varepsilon}$ provided that the extended Riemann hypothesis is true.
In 1968 A. A. Karatsuba found a method that allowed him to obtain non-trivial estimate of short sums of characters in finite fields with fixed degree. In 1970 using the modification of his technique coupled with Vinogradov's method he proved that: if $q$ is a prime number, $\chi$ is non-principal character modulo $q$ and $x\ge q^{\frac{1}{2}+\varepsilon}$, then the following estimate is true
$$T(\chi )\ll xq^{-\frac{1}{1024}\varepsilon^2}.$$

In 1985 Z. Kh. Rakhmonov generalized the estimate (IMV) for the case of composite modulo and proved: let $D$ is a sufficiently large positive integer, $\chi$ is a non-principal character modulo $D$, $\chi_q$ is primitive character generated by character $\chi$, then
$$T(\chi )\le x\ln^5x (\sqrt{\frac{1}{q}+\frac{q}{x}\tau^2(q_1)} +x^{-\frac{1}{6}}\tau (q_1)), \qquad q_1={\genfrac {0pt} {p\backslash D}{p\not\backslash q}}p.$$
If a character $\chi$ coincides with it generating primitive character $\chi_q$, then the last estimate is non-trivial for $x>q(\ln q)^{13}$.
In 2010 г. J. B. Friedlander, K. Gong, I. E. Shparlinski showed that a non-trivial estimate of the sum $T(\chi_q )$ exists for composite $q$ when $x$ — length of the sum, is of smaller order than $q$. They proved: for a primitive character $\chi_q$ and an arbitrary $\varepsilon >0$ there exists such $\delta >0$ that for all $x\ge q^{\frac{8}{9}+\varepsilon}$ the following estimate holds:
$$T(\chi_q )\ll xq^{-\delta}.$$
In 2013 Z. Kh. Rakhmonov obtained a non-trivial estimate of $T(\chi_q)$ for the composite modulo $q$ and primitive character $\chi_q$ when $x\ge q^{\frac{5}{6}+\varepsilon}$.
In this paper the theorem about the estimate of the sum $T(\chi_q)$ is proved for cubefree modulo $q$. It is non-trivial when $x\ge q^{\frac{5}{6}+\varepsilon}$.
Bibliography: 15 titles.

Keywords: Dirichlet character, shifted primes, short sums of characters, exponential sums over primes. Full text: PDF file (758 kB) References: PDF file   HTML file
UDC: 511.524
Accepted:10.03.2016

Citation: Z. Kh. Rakhmonov, Sh. Kh. Mirzorakhimov, “Sums of characters modulo a cubefree at shifted primes”, Chebyshevskii Sb., 17:1 (2016), 201–216 Citation in format AMSBIB
\Bibitem{RakMir16} \by Z.~Kh.~Rakhmonov, Sh.~Kh.~Mirzorakhimov \paper Sums of characters modulo a cubefree at shifted primes \jour Chebyshevskii Sb. \yr 2016 \vol 17 \issue 1 \pages 201--216 \mathnet{http://mi.mathnet.ru/cheb464} \elib{http://elibrary.ru/item.asp?id=25795083} 

• http://mi.mathnet.ru/eng/cheb464
• http://mi.mathnet.ru/eng/cheb/v17/i1/p201

 SHARE:      Citing articles on Google Scholar: Russian citations, English citations
Related articles on Google Scholar: Russian articles, English articles

This publication is cited in the following articles:
1. Z. Kh. Rakhmonov, “Sums of values of nonprincipal characters over a sequence of shifted primes”, Proc. Steklov Inst. Math., 299 (2017), 219–245     •  Number of views: This page: 169 Full text: 62 References: 49 Contact us: math-net2020_05 [at] mi-ras ru Terms of Use Registration Logotypes © Steklov Mathematical Institute RAS, 2020