|
This article is cited in 2 scientific papers (total in 2 papers)
On normalizers in some Coxeter groups
I. V. Dobrynina Tula State Pedagogical University
Abstract:
Let $G$ be a finitely generated Coxeter group with presentation $$G=< a_1,\ldots, a_n;(a_ia_j)^{m_{ij}}=1, i,j =\overline{1,n} >,$$ where $m_{ij}$ — are the elements of the symmetric Coxeter matrix: $\forall i,j \in\overline{1,n}, m_{ii}=1, m_{ij} \geq$ $ \geq2, i\ne j$.
If $m_{ij}\geq3$ $(m_{ij}>3)$, $i\ne j$, then $G$ is a Coxeter group of large (extra-large) type. These groups introduced by K. Appel and P. Schupp.
If the group $G$ corresponds to a finite tree-graph $\Gamma$ such that if the vertices of some edge $e$ of the graph $\Gamma$ correspond to generators $a_i, a_j$, then the edge $e$ corresponds to the ratio of the species $(a_ia_j)^{m_{ij}}=1$, then $G$ is a Coxeter group with a tree-structure.
Coxeter groups with a tree-structure introduced by V. N. Bezverkhnii, algorithmic problems in them was considered by V. N. Bezverkhnii and O. V. Inchenko.
The group $G$ can be represented as tree product 2-generated of Coxeter groups, amalgamated by cyclic subgroups.
Thus from the graph $\Gamma$ of $G$ will move to the graph $\overline{\Gamma}$ in the following way: the vertices of the graph $\overline{\Gamma}$ we will put in line Coxeter group on two generators $$G_{ij} = <a_i, a_j; a_i^2=a_j^2=1,(a_ia_j)^{m_{ij}}=1>$$
and $$G_{jk} = <a_j, a_k; a_j^2=a_k^2=1,(a_ja_k)^{m_{jk}}=1>,$$ to every edge $\overline{e}$ joining the vertices corresponding to $G_{ij}$ and $G_{jk}$ is a cyclic subgroup $$<a_j;a_j^2=1>.$$
In this paper we prove the following theorem: normalizer of finitely generated subgroup of Coxeter group with tree-structure $$\overline{G}=G_{ij}\ast_{<a_j; a_j^2>}G_{jk},$$ $$G_{ij} = <a_i, a_j; a_i^2=a_j^2=1,(a_ia_j)^{m_{ij}}=1>,$$ $$G_{jk} = <a_j, a_k; a_j^2=a_k^2=1,(a_ja_k)^{m_{jk}}=1>$$ finitely generated and exist algorithm for generating.
Bibliography: 18 titles.
Keywords:
Coxeter group, tree-structure, normalizer, amalgamated product.
Full text:
PDF file (662 kB)
References:
PDF file
HTML file
UDC:
519.4 Received: 16.04.2016 Accepted:10.06.2016
Citation:
I. V. Dobrynina, “On normalizers in some Coxeter groups”, Chebyshevskii Sb., 17:2 (2016), 113–127
Citation in format AMSBIB
\Bibitem{Dob16}
\by I.~V.~Dobrynina
\paper On normalizers in some Coxeter groups
\jour Chebyshevskii Sb.
\yr 2016
\vol 17
\issue 2
\pages 113--127
\mathnet{http://mi.mathnet.ru/cheb482}
\elib{https://elibrary.ru/item.asp?id=26254427}
Linking options:
http://mi.mathnet.ru/eng/cheb482 http://mi.mathnet.ru/eng/cheb/v17/i2/p113
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. N. Bezverkhnii, N. B. Bezverkhnyaya, I. V. Dobrynina, O. V. Inchenko, A. E. Ustyan, “Ob algoritmicheskikh problemakh v gruppakh Kokstera”, Chebyshevskii sb., 17:4 (2016), 23–50
-
I. V. Dobrynina, “O normalizatorakh podgrupp v gruppakh Kokstera s drevesnoi strukturoi”, Sib. elektron. matem. izv., 14 (2017), 1338–1348
|
Number of views: |
This page: | 105 | Full text: | 38 | References: | 13 |
|