RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Чебышевский сб.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Чебышевский сб., 2016, том 17, выпуск 3, страницы 53–63 (Mi cheb497)  

Обобщенный тензор кривизны Вагнера почти контактных метрических пространств

С. В. Галаев

Саратовский государственный университет им. Н. Г. Чернышевского

Аннотация: На многообразии с почти контактной метрической структурой $(M, \vec{\xi}, \eta, \varphi,g)$ и эндоморфизмом $N:D\rightarrow D$ вводится понятие $N$-продолженной связности $\nabla^N=(\nabla,N)$, где $\nabla$ — внутренняя связность. Найден эндоморфизм $N:D\rightarrow D$, при котором тензор кривизны $N$-продолженной связности совпадает с тензором кривизны Вагнера. Доказывается, что тензор кривизны внутренней связности равен нулю тогда и только тогда, когда на многообразии $M$ существует атлас адаптированных карт, для которых коэффициенты внутренней связности обращаются в нуль. Строится взаимно-однозначное соответствие между множеством $N$-продолженных связностей и множеством $N$-связностей. Показано, что класс $N$-связностей включает в себя связность Танака–Вебстера и связность Схоутена–ван Кампена. Получено равенство, выражающее $N$-связность через связность Леви–Чивита. Исследуются свойства тензора кривизны $N$-связности, названного в работе обобщенным тензором кривизны Вагнера. Доказывается, в частности, что обращение в нуль обобщенного тензора кривизны Вагнера в случае контактного метрического пространства влечет существование постоянного допустимого векторного поля любого направления. Показано, что тождественное равенство нулю обобщенного тензора кривизны Вагнера возможно лишь в случае нулевого эндоморфизма $N:D\rightarrow D$.
Библиография: 15 названий.

Ключевые слова: почти контактная метрическая структура, $N$-продолженная связность, обобщенный тензор кривизны Вагнера, связность Танака–Вебстера, связность Схоутена–ван Кампена.

Полный текст: PDF файл (572 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:
Тип публикации: Статья
УДК: 514.76
Поступила в редакцию: 08.02.2016
Принята в печать:13.09.2016

Образец цитирования: С. В. Галаев, “Обобщенный тензор кривизны Вагнера почти контактных метрических пространств”, Чебышевский сб., 17:3 (2016), 53–63

Цитирование в формате AMSBIB
\RBibitem{Gal16}
\by С.~В.~Галаев
\paper Обобщенный тензор кривизны Вагнера почти контактных метрических пространств
\jour Чебышевский сб.
\yr 2016
\vol 17
\issue 3
\pages 53--63
\mathnet{http://mi.mathnet.ru/cheb497}
\elib{http://elibrary.ru/item.asp?id=27452082}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/cheb497
  • http://mi.mathnet.ru/rus/cheb/v17/i3/p53

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:121
    Полный текст:52
    Литература:28
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020