Chebyshevskii Sbornik
 RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 General information Latest issue Archive Search papers Search references RSS Latest issue Current issues Archive issues What is RSS

 Chebyshevskii Sb.: Year: Volume: Issue: Page: Find

 Chebyshevskii Sb., 2016, Volume 17, Issue 3, Pages 64–71 (Mi cheb498)

Root-class residuality of fundamental group of a finite graph of group

D. V. Goltsov

Ivanovo State University

Abstract: Let $\mathcal{K}$ be an abstract class of groups. Suppose $\mathcal{K}$ contains at least a non trivial group. Then $\mathcal{K}$ is called a root-class if the following conditions are satisfied:
1. If $A \in \mathcal{K}$ and $B \leq A$, then $B \in \mathcal{K}$.
2. If $A \in \mathcal{K}$ and $B \in \mathcal{K}$, then $A\times B \in \mathcal{K}$.
3. If $1\leq C \leq B \leq A$ is a subnormal sequence and $A/B, B/C \in \mathcal{K}$, then there exists a normal subgroup $D$ in group $A$ such that $D \leq C$ and $A/D \in \mathcal{K}$.
Group $G$ is root-class residual (or $\mathcal{K}$-residual), for a root-class $\mathcal{K}$ if, for every $1 \not = g \in G$, exists a homomorphism $\varphi$ of group $G$ onto a group of root-class $\mathcal{K}$ such that $g\varphi \not = 1$. Equivalently, group $G$ is $\mathcal{K}$-residual if, for every $1 \not = g \in G$, there exists a normal subgroup $N$ of $G$ such that $G/N \in \mathcal{K}$ and $g \not \in N$. The most investigated residual properties of groups are finite groups residuality (residual finiteness), $p$-finite groups residuality and soluble groups residuality. All there three classes of groups are root-classes. Therefore results about root-class residuality have safficiently enough general character.
Let $\mathcal{K}$ be a root-class of finite groups. And let $G$ be a fundamental group of a finite graph of groups with finite edges groups. The necessary and sufficient condition of virtual $\mathcal{K}$-residuality for the group $G$ is obtained.
Bibliography: 16 titles.

Keywords: root-class of finite groups, fundamental group of a finite graph of groups, virtual $\mathcal{K}$-residuality.

Full text: PDF file (500 kB)
References: PDF file   HTML file
UDC: 512.543
Accepted:13.09.2016

Citation: D. V. Goltsov, “Root-class residuality of fundamental group of a finite graph of group”, Chebyshevskii Sb., 17:3 (2016), 64–71

Citation in format AMSBIB
\Bibitem{Gol16} \by D.~V.~Goltsov \paper Root-class residuality of fundamental group of a finite graph of group \jour Chebyshevskii Sb. \yr 2016 \vol 17 \issue 3 \pages 64--71 \mathnet{http://mi.mathnet.ru/cheb498} \elib{https://elibrary.ru/item.asp?id=27452083}